Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(B=\left(x+2\right)^2+\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-2 và y=1/5
b: \(C=\left(x+3\right)^4+1\ge1\)
Dấu '=' xảy ra khi x=-3
c: \(D=x^2-4x+4+11=\left(x-2\right)^2+11\ge11\)
Dấu '=' xảy ra khi x=2
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Ta có : x(x - 2) - x(x - 1) - 15 = 0
<=> x2 - 2x - x2 + x - 15 = 0
<=> -x - 15 = 0
=> -x = 15
=> x = -15
Bài 1:
\(A=x^2-6x+12=\left(x^2-6x+9\right)+3=\left(x-3\right)^2+3\ge3\)Vậy minA = 3 khi x = 3
\(B=x^2-4x+15=\left(x^2-4x+4\right)+11=\left(x-2\right)^2+11\ge11\)Vậy minB = 11 khi x = 2
\(C=x^2+y^2-2x+6y+17=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+7\)\(=\left(x-1\right)^2+\left(y+3\right)^2+7\ge7\)Vậy minC = 7 khi x = 1, y = -3
Bài 2:
Câu M mình thấy nó hơi lạ, nếu đề là \(M=4x-x^2+10\)thì mình giải được, bạn xem lại nhé!
\(M=4x-x^2+10=-\left(x^2-4x+4\right)+14=-\left(x-2\right)^2+14\le14\)Vậy maxM = 14 khi x = 2
\(N=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)Vậy maxN = \(\frac{1}{4}\)khi x = \(\frac{1}{2}\).
a) Vì |x-2| \(\ge\)0(1)
(2y-3)^10\(\ge\)0(2)
Từ (1),(2)\(\Rightarrow\)|x-2|+(2y-3)^10 +15\(\ge\)15
Dấu "=" xảy ra \(\Leftrightarrow\) x-2=0
2y-3=0
\(\Leftrightarrow\)x=2
y=3/2
Vậy GTNN của A=15\(\Leftrightarrow\)x=2;y=3/2
Ta có : x(x - 2) - x(x - 1) - 15 = 0
<=> x2 - 2x - x2 + x - 15 = 0
<=> -x - 15 = 0
=> -x = 15
=> x = -15