K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

bài 1

a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)

Dấu "=" xảy ra khi x=1

Vậy Amin=-1 khi x=1

b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)

Dấu "=" xảy ra khi x=1

Vậy Bmin=-2 khi x=1

bài 2:

a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

dấu "=" xảy ra khi x=-1/2

Vậy Amax=6/5 khi x=-1/2

b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu '=" xảy ra khi x=-2/3

Vậy Bmax=15/41 khi x=-2/3

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

27 tháng 8 2016

a  A=4x-x^2+3

      =(x-2)^2-1

     MIN A= -1 khi (x-2)^2=0

      x-2=0

      x=2

B=x-x^2

B=-x^2+x

-B=x^2-x

-B=(x-1/2)^2-1/4

B=-(x-1/2)^2+1/4

MAX B=1/4 khi -(x-1/2)^2=0

x-1/2=0

x=1/2

N=2x-2x^2-5

-N=2x^2-2x+5

-N=2(x^2-x+2)+1

-N=2{(x-1/2)^2+7/4}+1

-N=2(x-1/2)^2+7/2+1

-N=2(x-1/2)^2+9/2

N=-2(x-1/2)^2-9/2

MAX N=-9/2 khi -2(x-1/2)^2=0

x-1/2=0

x=1/2

9 tháng 9 2020

Bài 4.

1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )

<=> x3 + 27 - x3 + 3x = 40 - 8x

<=> 27 + 3x = 40 - 8x

<=> 3x + 8x = 40 - 27

<=> 11x = 13

<=> x = 13/11

2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0

<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0

<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0

<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0

<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)

+) 4x + 4 = 0 

<=> 4x = -4

<=> x = -1

+) 4x2 + 8x + 7 = 0 (*)

Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x

=> (*) không xảy ra 

Vậy x = -1

Bài 5.

1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinA = 1 <=> x = 1

2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinA = 4 <=> x = -1/2

3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x

Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4

=> MinA = 15/8 <=> x = -3/4

4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

=> MinA = -25/12 <=> x = -5/6

5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 12

=> MaxB = -3 <=> x = 1

6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxB = 4 <=> x = -2

7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x

Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4

=> MaxB = -7/8 <=> x = 3/4

8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MaxB = 9/4 <=> x = 3/2

9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )

        = [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]

        = ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)

Đặt t = x2 + 3x - 4

(*) <=> t( t + 6 )

       = t2 + 6t

       = ( t2 + 6t + 9 ) - 9

       = ( t + 3 )2 - 9

       = ( x2 + 3x - 4 + 3 )2 - 9

       = ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x

=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )

25 tháng 7 2018

\(a,A=9x^2+5-6x=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\)

Vì: \(\left(3x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\)GTNN của A là 4 tại \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

b,\(B=1+x^2-x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\)GTNN của B là 3/4 tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Các phần cn lại lm tg tự nha bn

27 tháng 6 2018

a) x2 - 2x + 5

= x2 - x - x + 1 + 4

= (x2 - x) - (x - 1) + 4

= x.(x-1) - (x-1) + 4

= (x-1)^2 + 4

Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)

Dấu ''='' xảy ra khi x-1=0 => x = 1.

Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg
21 tháng 3 2020
https://i.imgur.com/fBZ3FW2.jpg
4 tháng 4 2020

1) (x+1)2+2x=x(x+1)+6

⇔x2+2x+1+2x=x2+x+6

⇔x2+2x+1+2x-x2-x-6=0

⇔3x-5=0

⇔x=\(\frac{5}{3}\)

Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{5}{3}\)}