Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .
=> x = 0
I y + 4 I đạt giá trị nhỏ nhất khi y = -4
Vậy GTNN của biểu thức trên là 5
E đạt giá trị nhỏ nhất khi x = 1
y - 4 có giá trị nhỏ nhất là 0 nên y = -4
Vậy GTNN của biểu thức trên là 5
Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)
Vậy MinE = 4 khi \(2\le x\le3\)
giá trị nhỏ nhất là 0
vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
dấu bằng xảy ra khi
x - 2013 = 0
x-2014=0
x-2015=0
vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức
Gọi biểu thức trên là A
Ta thấy
A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:
/x-2013+2014-x/=/1/=1
Min A=1
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{MIN}=2\)
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
\(\left(x-1\right)^2-5\ge-5=>min=-5<=>\left(x-1\right)^2=0=>x-1=0=>x=1\)
vay GTNN la -5 tai x=1