K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

toán tuổi thơ 2 số 190

8 tháng 2 2020

a. 32 = 25 => n thuộc tập 1; 2; 3; 4

b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)

\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)

\(\Rightarrow x=\frac{12}{11}\)

c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25

=> 52p+2015 chẵn

=> 20142p + q3 chẵn

Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2

=> 52p + 2015 = 20142p+8

=> 52p+2007 = 20142p

2014 có mũ dạng 2p => 20142p có dạng B6

=> 52p = B6 - 2007 = ...9 (vl)

(hihi câu này hơi sợ sai)

d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)\(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)

\(\Rightarrow17A< 17B\)

\(\Rightarrow A< B\)

9 tháng 2 2020

de thi chon hoc sinh gioi nay

Câu 1:a) tính giá trị các biểu thức sau:A=2[(62 - 24) : 4] + 2014B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)Câu 2:a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)Câu 3: a) tìm số tự nhiên n để...
Đọc tiếp

Câu 1:

a) tính giá trị các biểu thức sau:

A=2[(6- 24) : 4] + 2014

B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)

b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

Câu 2:

a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42

c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)

Câu 3: 

a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố

b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b

c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên

câu 4:

1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm

a)tính MN

b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP

c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN

2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó

Câu 5:

a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)

b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n

0
10 tháng 5 2017

1/ P = 123456....20132014

Từ 1 - 9 có 9 chữ số

từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số

từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số

từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số

=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số

2/ 

n là số n tố > 3 => n lẻ => 22 lẻ

=> n2+ 2015 chia hết cho 2 nên là hợp số

3/

Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9

Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}

* nếu y = 0 => x = 4

* nếu y = 2 => x = 2

* nếu y = 4 => x E {0; 9}

* nếu y = 6 => x = 7

* nếu y = 8 => x = 5

Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]

4/

x/9 - 3/ y = 1/18

=> 2x/18 - 3/y = 1/18

=> 3/y = 1/18 - 2x/18

=> 3/y = 1-2x/18

=> y - 2xy = 54=> y[1-2x] = 54

mà 1 - 2x lẻ nên y chẵn

mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}

y-22-66-1818-5454
1-2x-2727-99-33-11
2x28-2610-84-220
x14-135-42-110

vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]

5/

Theo đề bài, ta có:

b E BC[14, 21]

mà b nhỏ nhất nên b = 42

=> 14a = 42 . 5

=> a = 15;

=> 21c = 28 . 42

=> c = 56;

từ đó suy ra

6d = 11 . 56

=> d = 308/3

=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng

16 tháng 2 2019

1+1=2hay3hay4

Đúng hay sai.

nguyen van viet 

1+1=2 

  đúng đó 

       ĐS:2

   học tốt!!!

Giúp mình làm đề toán này nhé !Bài 1:Cho biểu thức : A =\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)a) Rút gọn biểu thức b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a , là một phân số tối giản.Bài 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc​​ sao cho abc=\(^{n^2-1}\)  và cba = \(\left(n-2\right)^2\)Bài 3:a. Tìm n để \(n^2+2006\) là 1 số chính phương.b.Cho n là số...
Đọc tiếp

Giúp mình làm đề toán này nhé !

Bài 1:

Cho biểu thức : A =\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a) Rút gọn biểu thức 

b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a , là một phân số tối giản.

Bài 2 : 

Tìm tất cả các số tự nhiên có 3 chữ số abc​​ sao cho abc=\(^{n^2-1}\)  và cba = \(\left(n-2\right)^2\)

Bài 3:

a. Tìm n để \(n^2+2006\) là 1 số chính phương.

b.Cho n là số nguyên tố lớn hơn 3 . Hỏi \(n^2+2006\) là số nguyên tố hay là hợp số

Bài 4 : 

a. cho a,b,c  ϵ  N* . Hãy so sánh \(\frac{a+n}{b+n}\) và \(\frac{a}{b}\) 

b.cho A =\(\frac{10^{11}-1}{10^{12}-1}\)    ;     B= \(\frac{10^{10}+1}{10^{11}+1}\) . so sánh A và B.

Bài 5:

cho 10 số tự nhiên bất kì :  \(a_1,a_2,.......,a_{10}^{_{ }}\) . Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Bài 6 : 

Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau . Không có ba đường thẳng nào đồng qui . Tính số giao điểm của chúng .

 

Hết rùi đó, giúp mình nha. Làm được Một trong sáu bài đó là được rùi. Thank you.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
30 tháng 9 2016

Bài 6: 

Công thức tính số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là\(\frac{n\left(n-1\right)}{2}\) (giao điểm)

Vậy số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là \(\frac{2006-\left(2006-1\right)}{2}=2011015\left(giaođiểm\right)\)

 

30 tháng 9 2016

Bài 5:

Đặt S1 = a; S2 = a1 + a2  ; S3 = a1 + a2 + a; S10 = a1 + a2 + a3 + ... + a10

Xét 10 số S1, S2,...,S10 có hai trường hợp:

+ Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak , k từ 1 đến 10) => tổng của k số a1 , a2,...,a\(⋮10\left(đpcm\right)\)

+ Nếu không có số nào trong 10 số S1,S2,...,S10 tận cùng là 0 => chắc chắn phải có ít nhất hai số nào đó có chữ số tận cùng giống nhau. Ta gọi hai số đó là Sm và Sn \(\left(1\le m< n\le10\right)\) 

Sm = a+ a2 + ... + a(m)

Sn = a1 + a2 + ... + a(m) + a(m+1)+ a(m+2) + ... + a(n)

=> S- S= a(m+1) + a(m+2) + ... + a(n) tận cùng là 0

=> Tổng của n - m số a(m+1), a(m+2),..., a(n) \(⋮\) 10 (đpcm)