Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
Với n thuộc N sao ta có :
\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)
\(=\frac{\left(n-1\right)\left(n+2\right)}{\left(n+1\right)n}\)
Áp dụng ta được :
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}......\frac{2010.2013}{2011.2012}\)
\(=\frac{\left(1.2.3.....2010\right)\left(4.5.6.....2013\right)}{\left(2.3.4.....2011\right)\left(3.4.5.....2012\right)}\)
\(=\frac{2013}{2011.3}=\frac{2013}{6033}=\frac{671}{2011}\)
Đặt: \(L=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)
\(L=1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(L=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+..+\frac{2012}{2011}\)
\(L=2012\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2012}\right)\)
Hay: \(P=\frac{1}{2012}\)
\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)
\(=\frac{6}{2011}\)
Ta có :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}\right)}\)
\(\frac{1}{2012}\)
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)