K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)

\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)

Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)

Bài 2 : Đặt A =  \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)

Dấu ''='' xảy ra <=> x = 1 

Vậy GTNN A là -4 <=> x = 1

Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)

Tổng các giá trị x là : \(1+4=5\)

14 tháng 1 2021

3, Tổng các giá trị của x thỏa mãn:

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-4x-x+4=0\)

\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

11 tháng 7 2016

Cho x2_60x+900=0

Suy ra:x2_2.x.30+302=0

(x-30)2=0

suy ra x-30=0

vậy x=30

3 tháng 11 2015

vì x+y=4 nền (x+y)^2=4^2                                                                                                                                                                                            =x^2+ 2xy+y^2=16        ma  xy=5 nên 2xy=10  ta có x^2+y^2+10=16 ; x^2+y^2= 16-10                                                                                                                                                                                     x^2+y^2=6                                     kết quả mik là z đó nhưng k biết có đúng k bn ak

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)