K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH

CM: góc AEK = góc ABC

Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF

=> tam giác EJA cân tại J => AEJ = EAH (1)

Xét tam giác vuông ABH => EAH +ABC = 90

Xét tam giác vuông ABC=> ABC + ACB = 90

=> EAH = ACB  và (1) => ACB = AEJ  (2)

Vì  AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC

=> tam giác ABM cân tại M => EAK = ABC (3)

Xét tam giác EAK: có: AEJ + EAK = ACB + ABC  = 90 ( do 2 và 3)

=> tam giác AEK vuong tại K 

Hay AM vuông EF

4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI

Xét tam giác AID, có: 

H là trung ddierm của AI, M là trung điểm của AD 

=> HM là đường trung bình của tam giác AID => HM // ID

=> tứ giác BIDC là hình thang

Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)

Xét tứ giác ABCD có: 

M là trung điểm BC

M là trung điểm AD

M = BC giao AD

=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật

=> DCB = ABC (DC // AB và solle trong) (5)

Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân

 

 

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. 

1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

2: AM=2,5cm nên BC=5cm

=>AC=4cm

S=3x4/2=6cm2

3: 

Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

4: 

Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!

 

29 tháng 12 2021

a: AM=6,5cm

29 tháng 12 2021

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà AD=BC

nên ABDC là hình chữ nhật

29 tháng 12 2021

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà AD=BC

nên ABDC là hình chữ nhật

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

c: Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân