Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(1\frac{1}{3}=\frac{2^2}{3};1\frac{1}{8}=\frac{3^2}{8};.....\)
Nên thừa số thứ 98 là : \(1\frac{1}{9800}=\frac{99^2}{9800}\)
Ta có \(\frac{2^2}{3}.\frac{3^2}{8}......\frac{99^2}{9800}=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}=\frac{2.2.3.3.....99.99}{1.3.2.4....98.100}\)
\(=\frac{\left(2.3.4...99\right).\left(2.3.4....99\right)}{\left(1.2.3....98\right).\left(3.4.5...100\right)}=\frac{99.2}{1.100}=\frac{198}{100}=\frac{99}{50}\)
Bai3
201620162016/201720172017=2016.100010001/2017.100010002=2016/2017
Vay 201620162016/201720172017=2016/2017
bài 1 kobik
bài 2\(\frac{1}{39600}\):\(\frac{1}{4}\)=\(\frac{2}{33}\)
bài 3\(\frac{201620162016}{201720172017}=\frac{2016}{2017}\)
nên mó bằng nhau
Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.
Làm thì dài quá nên mình gợi ý thôi nhé
a)quy đồng
b)Sử dụng phần bù
c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28
(1/243)^6=(1/3^5)^6=1/3^30
Vì 1/3^28>1/3^30 nên ......
d)Tương tự câu d
Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!
a) \(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}.1\frac{1}{24}.........1\frac{1}{99}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}......\frac{100}{99}\)
\(=\frac{\left(2.2\right).\left(3.3\right).\left(4.4\right).\left(5.5\right)....\left(10.10\right)}{\left(1.3\right).\left(2.4\right).\left(3.5\right).\left(4.6\right).....\left(9.11\right)}\)
\(=\frac{\left(2.3.4.5...10\right).\left(23.4.5....10\right)}{\left(1.2.3.4...9\right).\left(3.4.5.6....11\right)}=\frac{10}{1}.\frac{2}{11}=\frac{20}{11}\)
b) \(\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}=\frac{99}{98}-\frac{98}{97}+\frac{1}{97}-\frac{1}{98}=\left(\frac{99}{98}-\frac{1}{98}\right)-\left(\frac{98}{97}-\frac{1}{97}\right)\)
\(=\frac{98}{98}-\frac{97}{97}=1-1=0\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.......\frac{9801}{9800}\)\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.....\frac{99.99}{98.100}\)
\(=\frac{2.3.4.....99}{1.2.3.....98}\)\(.\)\(\frac{2.3.4....99}{3.4.5...100}\)\(=\)\(\frac{99}{1}\)\(.\frac{2}{100}\)\(=\frac{198}{100}\)\(=\frac{99}{50}\)