Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\5-\dfrac{1}{2}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
b: \(\dfrac{2}{3}x+\dfrac{1}{2}x=\dfrac{5}{2}:\dfrac{15}{4}=\dfrac{5}{2}\cdot\dfrac{4}{15}=\dfrac{20}{30}=\dfrac{2}{3}\)
=>7/6x=2/3
hay \(x=\dfrac{2}{3}:\dfrac{7}{6}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
c: \(\left(\dfrac{44}{7}x+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(\Leftrightarrow x\cdot\dfrac{44}{7}+\dfrac{3}{7}=\dfrac{-11}{7}:\dfrac{11}{5}=\dfrac{-5}{7}\)
\(\Leftrightarrow x\cdot\dfrac{44}{7}=-\dfrac{8}{7}\)
hay \(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
8) ĐKXĐ: $-2\leq x\leq 1$
PT $\Leftrightarrow (2x+4)-4\sqrt{2x+4}+4+[(1-x)-2\sqrt{1-x}+1]=0$
$\Leftrightarrow (\sqrt{2x+4}-2)^2+(\sqrt{1-x}-1)^2=0$
Dễ thấy: $(\sqrt{2x+4}-2)^2; (\sqrt{1-x}-1)^2\geq 0$ với mọi $x\in [-2;1]$ nên để tổng của chúng bằng $0$ thì:
$(\sqrt{2x+4}-2)^2=(\sqrt{1-x}-1)^2=0$
$\Leftrightarrow \sqrt{2x+4}=2; \sqrt{1-x}-1=0$
$\Leftrightarrow x=0$ (thỏa mãn)
Vậy.....
7)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow x^2+[(x+1)-2\sqrt{x+1}+1]=0$
$\Leftrightarrow x^2+(\sqrt{x+1}-1)^2=0$
Ta thấy:
$x^2\geq 0; (\sqrt{x+1}-1)^2\geq 0$ với mọi $x\geq -1$
Do đó để tổng của chúng bằng $0$ thì $x^2=(\sqrt{x+1}-1)^2=0$
$\Leftrightarrow x=0$ (thỏa mãn)
Vậy.......
1: =>(x+2)^2-3|x+2|=0
=>|x+2|(|x+2|-3)=0
=>x+2=0 hoặc x+2=3 hoặc x+2=-3
=>x=-2; x=1; x=-5
Bài 1:
\(\left(x-1\right)^2-\left(x+4\right)\left(x-4\right)=x^2-2x+1-x^2+16=17-2x\)
Bài 2:
a) \(3\left(2x-4\right)+15=-11\)
\(\Leftrightarrow6x-12+15=-11\)
\(\Leftrightarrow6x=-14\)
\(\Leftrightarrow x=-\frac{7}{3}\)
b) \(x\left(x+2\right)-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=3\end{array}\right.\)