Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
Câu 3 và câu 4 thì tớ làm rồi nhé!
Câu 7:
+) Với p = 2 => p + 2 = 2 + 2 = 4 (là hợp số)
=> p = 2 (loại)
+) Với p = 3 => p + 2 = 3 + 2 = 5 (là số nguyên tố)
=> p + 10 = 3 + 10 = 13 (là số nguyên tố)
+) Với p > 3; p là số nguyên tố thì p có dạng là 3k + 1 hoặc 3k + 2
-) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 . (k + 1) \(⋮\) 3 (là hợp số)
=> p = 3k + 1 (loại)
-) p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3 . (k + 4) \(⋮\) 3 (là hợp số)
=> p = 3k + 2 (loại)
=> p chỉ có thể bằng 3
Vậy p = 3 thì p + 2 và p + 10 là số nguyên tố.
1) 3F=3+32+33+34+...+32016
3F-F=(3+32+33+34+...+32016)-( 1+3+32+33+...+32015)
2F=32016-1
F= 32016-1/2...
2)
\(A=3^1+3^2+...+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2017}\)
\(\Rightarrow3A-A=3^2+3^3+...+3^{2017}-\left(3^1+3^2+...+3^{2016}\right)\)
\(\Rightarrow2A=3^2+3^3+...+3^{2017}-3^1-3^2-...-3^{2016}\)
\(\Rightarrow2A=3^{2017}-3\)
Thay \(2A=3^{2017}-3\)vào \(2.A+3=3^x\), ta có:
\(3^{2017}-3+3=3^x\)
\(\Rightarrow3^{2017}=3^x\)
\(\Rightarrow x=2017\)
không biết.
1)
=> 3A = 32+33+34+...+32017
=> 3A-A=2A= (32+33+34+...+32017) - (3+32+33+...+32016)
=> 2A = 32017 - 3
=> A = 32017-3 chia cho 2 (viết dưới dạng phân số cho gọn nhé)
Sau đó cứ theo quy tắc mà tìm x nhé!!!@@