Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(N^2=\left(n_1+n_2+...+n_{100}\right)^2=n_1^2+n_2^2+...+n_{100}^2+2A=2013^2\) (A là tập hợp các số còn lại mà chia hết cho 2, ký hiệu vậy cho nó gọn)
\(\Rightarrow S=2013^2-2A\)
\(\Rightarrow S-1=2013^2-1-2A\)
Ta thấy rằng 2A chia hết cho 2 và 20132 - 1 chia hết cho 2 nên S - 1 chia hết cho 2
1) (3x-9)x (-2x+6) =0
2) rút gọn
a) (a+b+c)-(a-b-c)
b) ( a+b-c)-(a-b)-(a-b-c)
xét hiệu:
B-A=(a15-a1)+(a25-a2)+(a35-a3)+(a45-a4)+(a55-a5)
=(a1-1)a1(a1+1)(a12+1)+(a2-1)a2(a2+1)(a22+1)+(a3-1)a3(a3+1)(a32+1)+(a4-1)a4(a4+1)(a42+1)+(a5-1)a5(a5+1)(a52+1)
vì (a1-1)a1(a1+1);(a2-1)a2(a2+1);(a3-1)a3(a3+1);(a4-1)a4(a4+1);(a5-1)a5(a5+1) là tích 3 số tự nhiên liên tiếp
=>(a1-1)a1(a1+1);(a2-1)a2(a2+1);(a3-1)a3(a3+1);(a4-1)a4(a4+1);(a5-1)a5(a5+1) chia hết cho 3
=>(a1-1)a1(a1+1)(a12+1);(a2-1)a2(a2+1)(a22+1);(a3-1)a3(a3+1)(a32+1);(a4-1)a4(a4+1)(a42+1);(a5-1)a5(a5+1)(a52+1) chia hết cho 3
=>(a1-1)a1(a1+1)(a12+1)+(a2-1)a2(a2+1)(a22+1)+(a3-1)a3(a3+1)(a32+1)+(a4-1)a4(a4+1)(a42+1)+(a5-1)a5(a5+1)(a52+1) chia hết cho 3
=>B-A chia hết cho 3
mà A chia hết cho 3=>B chia hết cho 3
=>đpcm
Xét \(B-A=\left(a_1^5-a_1\right)+\left(a_2^5-a_2\right)+...+\left(a_n^5-a_n\right)..\)
Ta có: \(a_n^5-a_n=a_n\left(a_n^4-1\right)=a_n.\left(a_n-1\right)\left(a_n+1\right)\left(a_n^2+1\right)⋮3.\)
Tượng tự ta cũng có: \(a_1^5-a_1⋮3,a_2^5-a_2⋮3,....a_{n-1}^5-a_{n-1}⋮3.\)
\(\Rightarrow B-A⋮3,\)Mà \(A⋮3\Rightarrow B⋮3.\)