Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(5>2\Rightarrow\sqrt{5}>\sqrt{2}\)
b) Vì \(8>5\Rightarrow\sqrt{8}>\sqrt{5}\Rightarrow2\sqrt{2}>5\)
c) VÌ \(-32>-45\Rightarrow-\sqrt{32}>-\sqrt{45}\Rightarrow-4\sqrt{2}>-\sqrt{5}\)
d) Vì \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Leftrightarrow2\sqrt{3}< 3\sqrt{2}\)
Xét hiệu \(\left(2+\sqrt{2}\right)-\left(5-\sqrt{3}\right)\)
\(=2+\sqrt{2}-5+\sqrt{3}\)
\(=2+\sqrt{2}+\sqrt{3}-5\)
\(>2+\sqrt{1,96}+\sqrt{2,56}-5=2+1,4+1,6-5=2+3-5=0\)
Nên \(2+\sqrt{2}>5-\sqrt{3}\)
À mình viết lộn đề câu 1, co mình sửa lại nhá!
1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Vậy số cần tìm là 2213
Câu 4: a) ĐK: \(x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b) ĐK: \(x^2-3x+2\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) Đk: \(-3\le x< 5\)
d) x + 3 và 5 - x đồng dấu. Xét hai trường hợp:
\(\left\{{}\begin{matrix}x+3\ge0\\5-x>0\left(\text{do mẫu phải khác 0}\right)\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
\(\left\{{}\begin{matrix}x+3< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>5\end{matrix}\right.\) do x ko thể đồng thời thỏa mãn cả hai nên loại.
Câu 1:
a) Đặt \(A=x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\)
\(A=x+\left|x+2\right|\cdot\left(x-2\right)\)
+) Với \(x\ge-2\):
\(A=x+\left(x+2\right)\left(x-2\right)=x+x^2-4\)
+) Với \(x< -2\):
\(A=x-\left(x+2\right)\left(x-2\right)=x-x^2+4\)
b) \(B=\sqrt{m^2-6m+9-2m}\)
\(B=\sqrt{m^2-8m+9}\)
Bạn xem lại đề nhé :)
c) \(C=1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)
\(C=1+\sqrt{x-1}\)
d) \(D=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(D=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(D=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(D=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
+) Xét \(x\ge8\):
\(D=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
+) Xét \(4< x< 8\):
\(D=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Vậy....
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....