Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\left(1\right)\)
\(\text{ĐKXĐ}:x^3+1\ge0\Leftrightarrow x\ge-1\)
(*) <=> 4(x2 + 2)2 = 25( x3 + 1 )
<=> 4( x4 + 4x2 + 4 ) = 25(x3 + 1)
<=> 4x4 + 16x2 + 16 = 25x3 + 25
<=> 4x4 - 25x3 + 16x2 - 9 = 0
<=> 4x4 - 5x3 - 20x3 + 3x2 + 25x2 - 12x2 + 15x - 15x - 9 = 0
<=> 4x4 - 5x3 + 3x2 - 20x3 + 25x2 - 15x - 12x2 + 15x - 9 = 0
<=> x2( 4x2 - 5x + 3 ) - 5x( 4x2 - 5x + 3 ) - 3(4x2 - 5x + 3 ) = 0
<=> ( x2 - 5x - 3)( 4x2 - 5x + 3 ) = 0
tới đây delta hoặc vi-ét thì tùy
\(\Leftrightarrow x=\frac{5+\sqrt{37}}{2}\)
\(\Leftrightarrow x=\frac{5-\sqrt{37}}{2}\)
Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:
\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)
Ta thấy 34 = 52 + 32 nên ta có bảng:
2x-1 | 5 | -5 | 3 | -3 |
x | 3 | -2 | 2 | -1 |
2y-1 | 5 | -5 | 3 | -3 |
y | 3 | -3 | 2 | -1 |
Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)
Ta có :
\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)
\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)
\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)
\(4\sqrt{x}=\frac{3}{8}+2x\)
\(\Rightarrow16x=\left(\frac{3}{8}+2x\right)^2\)
\(\Rightarrow16x=\frac{19}{64}+\frac{3x}{2}+4x^2\)
\(\Rightarrow32x=\frac{9}{32}+3x+8x^2\)
\(\Rightarrow32x-\frac{9}{32}-3x-8x^2=0\)
\(\Rightarrow29x-\frac{9}{32}-8x^2=0\)
......