Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn
đúng quá đúng ko các bạn tick cho mình nhé
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
vì p là SNT lớn lơn 3 => p có dạng: 3k+1 hoặc 3k+2( k thuộc N*)
TH1: p=3k+1
=> 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 ( TM)
TH2: p=3k+2
=> 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3(TM)
vậy nếu p là SNT lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Vì p là số nguyên tố, p>3 nên p không chia hết cho 3
Vì p không chia hết cho 3 nên p có 1 trong 2 dạng: 3k+1, 3k+2(k thuộc N*)
Xét hai trường hợp:
+)p=3k+1(k thuộc N*)
Khi đó p2-1=(3k+1)2-1=9k2+6k+1-1=9k2+6k=3(3k2+2k)
Vì k thuộc N* nên 3k2+2k thuộc N*
Vì thế 3(3k2+2k) chia hết cho 3 nên p2-1 chi hết cho 3
+)p=3k+2(k thuộc N*)
Khi đó p2-1=(3k+2)2-1=9k2+12k+4-1=9k2+12k+3=3(3k2+4k+1)
vì k thuộc N* nên 3k2+4k+1 thuộc N*
Vì thế 3(3k2+4k+1) chia hết cho 3 nên p2-1 chia hết cho 3
Vậy nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3
Giả sử p� là số nguyên tố lớn hơn 33, vì vậy p là số lẻ. Do đó, ta có thể biểu diễn p dưới dạng p=2k+1,�=2�+1, với k� là một số nguyên không âm.
Thay p� vào p2−1�2-1, ta có: p2�2 −- 11 == (2k+1)2(2�+1)2−-11==4k2+4k+1−14�2+4�+1-1==4k(k+1)4�(�+1)
Ta nhận thấy rằng một trong hai số k� hoặc k+1�+1 phải là số chẵn. Vì vậy, một trong hai số k� hoặc k+1�+1 chia hết cho 22. Vì vậy, p2�2−-11 chia hết cho 2.4=8.2.4=8.
Ngoài ra, vì p là số nguyên tố lớn hơn 33, nên p không chia hết cho 33. Vì vậy, k� và k+1�+1 không thể đều chia hết cho 33. Do đó, k� hoặc k+1�+1 phải chia hết cho 33. Vì vậy, p2�2−-11 chia hết cho 33.
Tổng hợp lại, p2�2−-11 chia hết cho 88 và 33. Vì 88 và 33 nguyên tố cùng nhau, nên p2�2−-11 chia hết cho 8.3=24.
Xét số nguyên tố p khi chia cho 3.
Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.
Đúng 100%
Nếu p là số nguyên tố lớn hơn 3 thì p2-1=p2-12=(p-1)(p+1)
Ta đặt A=(p-1)p(p+1) thì A chia hết cho 3
Mặt khác (p;3)=1
=>(p-1)(p+1) chia hết cho 3 hay p2-1 chia hết cho 3
Vì p là số nguyên tô lớn hơn 3 nên p ko chia het cho 3
Do đó p^2 chia cho 3 dư 1 tức p^2=3k+1
=>p^2-1=3k+1-1=3k chia het cho 3(đpcm)
Vậy p^2-1 chia het cho 3
Tĩck nhé