Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Lại có:
\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)
Vậy ...
Những dãy trên đều có 100 số hạng.
Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow2^2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\)
\(\Rightarrow2^2A-A=\left(1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\right)\)
\(\Rightarrow3A=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{2^{100}}}{3}< \dfrac{1}{3}\)(đpcm)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)
a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{2018}{2019!}\\ =\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+...+\left(\dfrac{1}{2018!}-\dfrac{1}{2019!}\right)\\ =1-\dfrac{1}{2019!}< 1\)
b) \(\dfrac{1\cdot2-1}{2!}+\dfrac{2\cdot3-1}{3!}+...+\dfrac{999\cdot1000-1}{1000!}\\ =\dfrac{1\cdot2}{2!}-\dfrac{1}{2!}+\dfrac{2\cdot3}{3!}-\dfrac{1}{3!}+...+\dfrac{999-1000}{1000!}-\dfrac{1}{1000!}\\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{1!}-\dfrac{1}{3!}+\dfrac{1}{2!}-\dfrac{1}{4!}+...+\dfrac{1}{999!}+\dfrac{1}{1000!}\\ =1+1-\dfrac{1}{1000!}\\ =2-\dfrac{1}{1000!}< 2\)
Ta có:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+\dfrac{4}{4!}-\dfrac{1}{4!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}\)
Mà \(1-\dfrac{1}{100!}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}\)+ \(\dfrac{2}{3!}\)+ \(\dfrac{3}{4!}\)+...+\(\dfrac{99}{100!}\)
= \((\)\(\dfrac{1}{1!}\)-\(\dfrac{1}{2!}\)\()\) + \((\)\(\dfrac{1}{2!}\)-\(\dfrac{1}{3!}\)\()\) + \((\)\(\dfrac{1}{3!}\)-\(\dfrac{1}{4!}\)\()\) +...+ \((\)\(\dfrac{1}{99!}\)-\(\dfrac{1}{100!}\)\()\)
= 1-\(\dfrac{1}{100!}\) < 1.
+)Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...+\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+...+\dfrac{1}{200}\right)\)\(A>\dfrac{1}{125}.25+\dfrac{1}{150}.25+\dfrac{1}{175}.25+\dfrac{1}{200}.25=\dfrac{533}{840}>\dfrac{5}{8}\)
+)\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...+\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...+\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...+\dfrac{1}{200}\right)\)\(A< \dfrac{1}{100}.20+\dfrac{1}{120}.20+\dfrac{1}{140}.20+\dfrac{1}{160}.20+\dfrac{1}{180}.20=\dfrac{1879}{2520}< \dfrac{3}{4}\)