K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

1) \(A=x\left(x-6\right)+10=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

Dấu "=" xảy ra khi: \(x=3\)

\(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\)

Dấu "=" xảy ra khi: \(x=y=1\)

2) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi: \(x=2\)

\(B=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{2}\)

\(C\) mk nghĩ đề sai

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(C=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)

\(C=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)\)

\(C=\left(x^2+5x+5\right)^2-1\)

\(C=\left(x^2+5x+\dfrac{25}{4}-\dfrac{5}{4}\right)^2-1\)

\(C=\left[\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]^2-1\ge\dfrac{9}{16}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{5}{2}\)

\(D=4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Dấu "=" xảy ra khi: \(x=2\)

\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra khi: \(x=-4\)

2 tháng 7 2018

1/ Sửa đề a+b=1

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay a+b=1 vào M ta được:

\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng:

2n-11-12-2
n103/2 (loại)-1/2 (loại)
     

Vậy n={1;0}

2 tháng 7 2018

câu 4c phải là x-1 mới đúng chứ

1 tháng 12 2016

GTNN :

B=4x2+4x+11

= (2x)2+2*x*2+22+7

=(2x+2)2+7>= 7

dấu ''='' sảy ra khi 2x+2=0

                        => x = -1

vậy GTNN của biểu thức B là 7 tại x = -1

         

30 tháng 9 2018

\(B=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dau "=" xay ra  <=>  \(x=-\frac{1}{2}\)

Vay.....

7 tháng 4 2020

a) \(A=\left(x^2-2.2x+4\right)-3\)

\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)

Vậy minA = -3 khi x = 2

b) \(B=4x^2+4x+11\)

\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)

\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)

Vậy min B = 10 khi x = -1/2

c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Vậy MinC= -36 khi x =0 và x = -5

d) \(D=2x^2+y^2-2xy+2x-4y+9\)

\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)

\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)

\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy min D = 4 khi x = 1 và y = 3

11 tháng 7 2018

\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)

                                    =  \(\left(2x-6\right)^2-25>=-25\)

                                       

A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)

<=> \(x=3\)

các câu còn lại tương tự

11 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(a,A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

\(b,B=x^2-x+1\)

\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

\(c,C=-x^2+6x-15\)

\(C=-\left(x^2-6x+15\right)\)

\(C=-\left(x^2-6x+4+11\right)\)

\(C=-\left[\left(x-2\right)^2+11\right]\)

\(C=-\left(x-2\right)^2-11\)

Nhận xét:  \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxC=-11\Leftrightarrow x=2\)

\(d,D=\left(x-3\right)\left(1-x\right)-2\)

\(D=x-x^2-3+3x-2\)

\(D=-x^2+4x-5\)

\(D=-\left(x^2-4x+5\right)\)

\(D=-\left(x^2-4x+4+1\right)\)

\(D=-\left[\left(x-2\right)^2+1\right]\)

\(D=-\left(x-2\right)^2-1\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxD=-1\Leftrightarrow x=2\)

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )

13 tháng 2 2018

A=(x2-4x+4)-5=(x-2)2-5≥-5

Dau bang xay ra khi: x=2

Vay GTNN cua A=-5 khi x=2

B=(4x2+4x+1)+10=(2x+1)2+10≥10

Dau bang xay ra khi: x=-1/2

Vay GTNN cua B=10 khi x=-1/2

C=[(x-1)(x+6)].[(x+2)(x+3)]

= (x2+5x-6)(x2+5x+6)

Dat x2+5x=a => (a-6)(a+6)=a2-36≥-36

Dau bang xay ra khi : a=0 => x=0 hoac x=-5

Vay GTNN cua C=-36 khi x=0 hoac c=-5

D=-(x2+8x-5)

=> -D=x2+8x-5=(x2+8x+16)-21=(x+4)2-21

=> D= 21-(x+4)2≤21

Dau bang xay ra khi : x=-4

Vay GTLN cua D=21 khi x=-4

E=-(x2-4x-1)=-(x2-4x+4-5)=-(x-2)2+5=5-(x-2)2≤5

Dau bang xay ra khi : x=2

Vay GTLN cua E=5 khi x=2

13 tháng 2 2018

\(A=x^2-4x+1\\ =x^2-4x+4-3\\ =\left(x^2-4x+4\right)-3\\ =\left(x-2\right)^2-3\\ \text{Do }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-2\right)^2-3\ge-3\forall x\\ \text{Dấu }"="\text{ xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }A_{\left(Min\right)}=-3\text{ }khi\text{ }x=2\)

\(B=4x^2+4x+11\\ =4x^2+4x+1+10\\ =\left(4x^2+4x+1\right)+10\\ =\left(2x+1\right)^2+10\\ \text{Do }\left(2x+1\right)^2\ge0\forall x\\ \Rightarrow B=\left(2x+1\right)^2+10\ge10\forall x\\ \text{Dấu }"="\text{ xảy ra khi: }\\ \left(2x+1\right)^2=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\\ \\ \text{Vậy }B_{\left(Min\right)}=10\text{ }khi\text{ }x=-\dfrac{1}{2}\)

\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\\ =\left(x^2-x+6x-6\right)\left(x^2+3x+2x+6\right)\\ =\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ =\left(x^2+5x\right)-36\\ \text{Do }\left(x^2+5x\right)^2\ge0\forall x\\ \Rightarrow C=\left(x^2+5x\right)^2-36\ge-36\forall x\\ \text{Dấu }"="\text{ xảy ra khi: }\\ \left(x^2+5x\right)^2=0\\ \Leftrightarrow x^2+5x=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\ \text{Vậy }C_{\left(Min\right)}=-36\text{ }khi\text{ }x=-0\text{ hoặc }x=-5\)

24 tháng 8 2018

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)

\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)

\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

Bạn làm tương tự nhé

26 tháng 6 2019

x^2 + 2x + 2

= x^2 + 2x + 1 + 1

= (x + 1)^2 + 1 > 1

=> dương với mọi x