K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

nghiệm: xyz=(0,1,1)

20 tháng 3 2018

 Xét x = 0

Ta có 1 + 2017y = 2018z

mà 1+2017 = 2018

Nên x = 0; y = z = 1

Xét x > 0

2016 tận cùng 6 nên 2016x luôn tận cùng 6

2017y có tận cùng là 7y và là 1, 7, 9, 3

2018z có tận cùng là 2, 4, 6, 8

Có 6 + 1= 7

     6 + 3 = 9

     6 + 7 = 13

     6 + 9 = 15

Vế trái không có tận cùng bằng VP nên không thỏa mãn

Vậy pt có nghiệm duy nhất là (x; y; z) = (0; 1; 1)

5 tháng 5 2020

bạn chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/60436537466.html

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

2 tháng 1 2017

y=x+z-a (a=2016)

y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)

-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]

-3(x+z)[xz-ay]+2016^3=2017^2

2017 không chia hết cho 3 vô nghiệm nguyên

Bạn test lại xem hay biến đổi nhầm nhỉ

2 tháng 1 2017

Bị lừa rồi.

thực ra rất đơn giản

\(x-y+z=2016\)(1)

\(x^3-y^3+z^3=2017^2\)(2)

(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)

(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên