K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

A) MP vuông góc AB tại P => góc MPA=90; MQ vuông góc AC tại Q=> MQA=90

=> tg APMQ nội tiếp(tổng 2 góc đối =90)

b) diện tích tam giác AMB=1/2.MP.AB=1/2.MP.BC; diện tích tam giác AMC=1/2.MQ.AC=1/2.MP.BC( AB=BC=CA tam giác đều)

S tam giác ABC=1/2.AH.BC

ta có: S AMB+S AMC=S ABC  <=> \(\frac{1}{2}.MP.BC+\frac{1}{2}MQ.BC=\frac{1}{2}AH.BC\Leftrightarrow\frac{1}{2}BC\left(MP+MQ\right)=\frac{1}{2}.BC.AH\)

=> MP+MQ=AH

c) góc AHM=90(AH là đường cao)=> H cũng thuộc đường tròn đường kính AM <=> ngũ giác APMQH nội tiếp

(O): góc HAQ=1/2 góc HOQ(góc nt và góc ở tâm)

tam giác AHC vuông => góc HAC=90-C=90-60=30 độ hay HAQ=30(góc C=60 vì tam giác đều)

=> góc HOQ=2.30=60 . 

(O): góc PAQ=1/2 góc POQ(góc nt và góc ở tâm) <=> góc POQ=2.60=120( góc PAQ hay BAC=60- tam giác đều)

góc HOQ=60 => OH là pg của góc POQ.

tam giác POQ có: OP=OQ=R=> tam giác cân => OH đồng thời là đường cao => OH vuông góc PQ

10 tháng 6 2020

câu a , tổng hai góc đối là 180 độ nhé bạn

15 tháng 7 2018

a. Các góc APH, góc AQM = 9o độ nên các điểm A,P,Q, M thuộc đường tròn tâm O đường kính AM 
b. ^AHM = 90 độ nên H trên (O) . Xét hai tg PBH và tg MBA có ^PBH chung ^BPH = ^AMB(cùng bù ^APH) nên tg PBH đồng dạng tg MBA nên có : BP.BA = BH.BM 
c. Tg ABC đều có AH trung tuyến nên AH phân giác suy ra ^PAH = ^CAQ = ^QAH nên cung PH = cung HQ nên OH là bán kính qua điểm chính giửa của cung nên qua trung điểm của dây PQ vậy OH vuông góc PQ. 
d.Có PQ > AC nmaf AC > AH nên PQ >AH

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

14 tháng 5 2021

Ta có: MP vuông góc AB (gt)

=) Góc MPA = 90độ (1)

Lại có: MQ vuông góc AC (gt)

=) Góc MQA = 90 độ (2)

Từ (1) và (2) =) góc MPA + góc MQA = 180độ

Mà 2 góc ở vị trí đối nhau

=) Tứ giác APMQ nội tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0