K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

B1

Áp dụng định lý Pytago vào các tam giác vuông ta được:

PC^2=AP^2+AC^2

BN^2=AB^2+AN^2

BC^2=AB^2+AC^2

Theo tính chất tam giác vuông ta được:

AM=\(\dfrac{1}{2}\)BC=>AM^2=\(\dfrac{1}{4}\)BC^2

Từ trên =>AM^2+BN^2+CP^2=

\(\dfrac{1}{4}\)BC^2+AB^2+\(\dfrac{\left(AC\right)^2}{4}\)+AC^2+\(\dfrac{\left(AB\right)^2}{4}\)=\(\dfrac{2\left(BC\right)^2}{4}\)+BC^2=\(\dfrac{3}{2}\)BC^2(đpcm)

\(\dfrac{1}{4}\)

A B C P M N

24 tháng 10 2017
  • ẦN MINH HOÀNG2GP
  • Izumiki AkikoKien NguTrần Thân Đồng
  • QuNguTrần Việt Linh
  • yễn HoànHuỳnh Thoại
  • g Đình Bảo
  • Nguyễn Hoàng Đình Bảo
  • Phương HÀ
  • Thanh Hằng
  • ốc Lộc
  • yen
24 tháng 10 2017

GHI DE BI SAI RỒI

25 tháng 10 2017

TORO ZANE chắc là thầy mk nhầm ; mk cm được :

nhưng phải là 2.(AB^2+AC^2+BC^2)

1 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

15 tháng 2 2020

6a1 is real

Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:

1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)

2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)

3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.

4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.

5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)

6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.

15 tháng 12 2016

A B C M N P

a) Xét ΔANM và ΔCNP có:

AN=CN(gt)

\(\widehat{ANM}=\widehat{CNP}\left(đđ\right)\)

NM=NP(gt)

=> ΔANM=ΔCNP(c.g.c)

=> AM=PC

\(\widehat{NAM}=\widehat{NCP}\) . Mà hai góc này ở vị trí sole trong

=> AB//CP

CÓ:\(AM=\frac{1}{2}AB\left(gt\right)\) . mà AM=CP(cmt)

=> \(CP=\frac{AB}{2}\)

b) CÓ: \(CP=\frac{AB}{2}\left(cmt\right)\)

Mà: \(BM=\frac{AB}{2}\left(gt\right)\)

=> \(CP=BM\)

Xét ΔBMC và ΔPCM có:

BM=CP(cmt)

\(\widehat{BMC}=\widehat{PCM}\) ( sole trong do CP//AB)

MC:cạnh chung

=> ΔBMC=ΔPCM(c.g.c)

=> \(\widehat{BCM}=\widehat{PMC}\) . Mà hai góc này ở vị trí sole trong

=> MN//BC

Xét ΔABC có: NA=NC(gt) ; MA=MB(gt)

=>MN là đường trung bình

=> \(MN=\frac{BC}{2}\)

5 tháng 3 2019

a)Xét tam giác APM có: AM < AP + PM (tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh còn lại) 

Xét tam giác ANM có: AM < AN + NM (tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh còn lại) 

=> 2AM < AP + PM + AN +NM (cộng vế với vế) (1) 

Lại có: AP = MN (t/c đường trung bình của tam giác ABC) (2) 

PM = AN (t/c đường trung bình của tam giác ABC) (3) 

Từ (1),(2),(3) => 2AM < 2AP + 2AN 

<=> 2AM < AB + AC (Do CP và BN là đường trung tuyến của tam giác ABC) 

<=> AM < 1/2 (AB+AC) (chia cả hai vế cho 2) 

b) 
* CM tương tự: 

-BN < 1/2 (AB+AC) 

-CP < 1/2 (AC+CB) 

AM < 1/2 (AB+AC) 

=> AM + BN + CP < 1/2 (AB+AC+AB+BC+AC+BC) 

<=>AM + BN + CP < AB+AC+BC (3) 
 

* Có: BG+GC > BC (Xét tam giác BGC) 

- GC+AG > AC (Xét tam giác CGA) 

- AG+BG > AB (Xét tam giác AGB) 

=> 2GB+2GC+2GA > AB+AC+BC 

<=>2.2/3BN + 2.2/3PC + 2.2/3AM > AB+AC+BC (t/c đường trung tuyến trong tam giác ABC) 

<=>4/3 (BN + PC + AM) > AB+AC+BC 

<=>BN+PC+AM > 3/4( AB+AC+BC ) (nhân cả hai vế với 3/4) (4) 

Từ (3),(4) => 3/4(AB+AC+BC) < AM+BN+CP < AB+AC+BC

♥Tomato♥