Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Cho hình vuông ABCD, M là trung điểm AB. Trên tia đối của tia CB vẽ CN=AM. I là trung điểm MN. Tia DI cắt BC tại E, MN cắt CD tại F. Từ M vẽ MK vuông góc với AB và cắt DE tại K.
a, Cm MKNE là hình thoi (đã làm được)
b, Cm A,I,C thẳng hàng
c, Cho AB=a. Tính diện tích BMEtheo a (Đã làm được)
Giải Giùm mình đi, nhất là câu b
\(x^2+2\left(m+2\right)x+m+8\)
\(a=1;b'=m+2;c=m+8\)
\(\Delta'=\left(m+2\right)^2-\left(m+8\right)\)
\(=m^2+4m+4-m-8=m^2+3m-4\)
Vì \(a=1\ne0\)nên để phương trình có 2 nghiệm x1,x2
\(\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2+3m-4\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-4\\x\ge1\end{cases}}\)
theo hệ thức vi-et,ta có:
S=x1+x2=-2m-2
p=x1.x2=m+8
có x1+x2=3x1x2+2
<=>-2m-2=3(m+8)+2
<=>-2m-2=3m+24+2
<=>m=\(-\frac{28}{5}\)
\(x^2+2\left(m+1\right)x+2m-4=0\)
a) \(\Delta^'=b'^2-ac=\left(m+1\right)^2-1.\left(2m-4\right)\)
=\(m^2+2m+1-2m+4\)
\(=m^2+5\)
pt có 2 nghiệm phân biệt khi \(\Delta'>0\)
Ta có: \(m^2\ge0\)
\(\Leftrightarrow m^2+5>0\)
Do đó pt có 2 nghiệm phân biệt
b) Theo định lý vi ét:
\(x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m+1\right)}{1}=-2m-2\)
\(x_1.x_2=\dfrac{c}{a}=\dfrac{2m-4}{1}=2m-4\)
Mà \(x_1^2+x_2^2=12\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)
=>\(\left(-2m-2\right)^2-2\left(2m-4\right)=12\)
\(\Rightarrow\left(-2m\right)^2-2.2m.2+2^2-4m+8=12\)
\(\Rightarrow4m^2-8m+4-4m+8=12\)
\(\Rightarrow4m^2-12m+12=12\)
\(\Rightarrow4m^2-12m+12-12=0\)
\(\Rightarrow4m^2-12m=0\)
=>\(2m.\left(2m-6\right)=0\)
=>\(\left[{}\begin{matrix}2m=0\\m-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
vậy với m=0, m=3 thì \(x_1^2+x^2_2=12\)
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
x2 - 2( m + 1 )x + 2m - 4 = 0
1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )
= 4( m + 1 )2 - 8m + 16
= 4( m2 + 2m + 1 ) - 8m + 16
= 4m2 + 8m + 4 - 8m + 16
= 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có nghiệm với mọi m ( đpcm )
2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)
Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)
\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )
\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)
\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)
\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)
\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)
\(=2\left(m+1\right)^2+2m^2+10\)
\(=2\left(m^2+2m+1\right)+2m^2+10\)
\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)
3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((
à xin phép em sửa một tí :))
1. ... = 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )
2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...
em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(
a. PT có 2 nghiệm `x_1` và `x_2 <=> \Delta>=0`
`<=>5^2-4.1.(-3m)>=0`
`<=>m>=-25/12`
b. Không hiểu câu hỏi lắm ?
Câu 2 là với điều kiện m trên hãy lập 1 phương trình bậc 2 có 2 nghiệm là \(\dfrac{2}{\left(x_1\right)^2}\)và \(\dfrac{2}{\left(x_1\right)^2}\) á bạn giúp mình nhaa