\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)

a.Tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

ta thấy hệ luôn có nghiệm với mọi m

hệ nghiệm (x,y) duy nhất là \(x=\dfrac{16m-18}{6+m^2};y=\dfrac{48+9m}{6+m^2}\)

hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV <=>

x>0 và y<0 <=>

\(\left\{{}\begin{matrix}\dfrac{16m-18}{m^2+6}>0\\\dfrac{48+9m}{m^2+6}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{18}{16}\\m< \dfrac{-48}{9}\end{matrix}\right.\) vô nghiệm

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

4 tháng 2 2021

 m=3m=3 hoặc m=1m=1.

 

9 tháng 2 2021

\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)

xét phương trình 2 ta được ; (m-2)(m+3)x=m+3

với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m

xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z

                                          =>x-1=2k

                                           =>x=2k+1

do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z

                         =>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn

 

3 tháng 4 2020

a) \(\hept{\begin{cases}2.\left(m-1\right).x-2.m.y=6m-2\\2.\left(m-1\right).x-\left(m-1\right).y=\left(m-1\right).\left(m+5\right)\end{cases}}\)

=> -2.m.y + ( m-1 ) .y = 6m - 2- ( m2 - m + 5.m -5 ) 

=> ( -m - 1 ) . y = -m2 + m + 2 

hay y = \(\frac{m^2-m-2}{m+1}=\frac{\left(m+1\right).\left(m-2\right)}{\left(m+1\right)}\)

         = m - 2 

Với m \(\ne\)-1 => y = m- 2 

Khi đó x = \(\frac{m+5+y}{2}=\frac{m+5+m-2}{2}=\frac{2m+3}{2}\)

b) \(\hept{\begin{cases}y=\left(m+5\right)+2.x\\m.y=\left(3.m-1\right)-\left(m-1\right).x\end{cases}}\)hay \(\hept{\begin{cases}y=2.x-\left(m+5\right)\\y=\frac{-\left(m-1\right).x+\left(3m-1\right)}{m}\end{cases}}\)

Vậy để hai đường thẳng của hệ cắt nhau cho giá trị nằm ở góc phần tư thứ IV của Oxy => \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< \frac{m+5}{2}\\x>\frac{3m-1}{m-1}\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m< 6\end{cases}\Rightarrow}\hept{\begin{cases}m=4\\m=5\end{cases}}}\)( Mình cũng không chắc phần này ở đoạn đầu tiên nha )