Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI ⊥⊥ MN, OK ⊥⊥ PQ.
Trong đường tròn nhỏ, ta có: MN > PQ ⇒⇒ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK ⇒⇒ AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d) OI<OK⇒OIOA<OKOAOI<OK⇒OIOA<OKOA
⇒sinˆOAI<sinˆOAK⇒ˆOAI<ˆOAK⇒ˆOAE<ˆOAH.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI \bot⊥ MN, OK \bot⊥ PQ.
Trong đường tròn nhỏ, ta có: MN > PQ \Rightarrow⇒ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK \Rightarrow⇒ AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d) OI < OK\Rightarrow\frac{OI}{OA}<\frac{OK}{OA}OI<OK⇒OAOI<OAOK
\Rightarrow \sin{\widehat{OAI}}< \sin{\widehat{OAK}} \Rightarrow \widehat{OAI}<\widehat{OAK} \Rightarrow \widehat{OAE}<\widehat{OAH}.⇒sinOAI<sinOAK ⇒OAI<OAK⇒OAE<OAH.
a) sử dụng tính chất tiếp tuyến là ra
b) vì MN > PQ ==> AE>AH
c) vì AB và AC là 2 tiếp tuyến ==> góc ABO=góc ACO=90 độ
xét tứ giác ABOC có 2 góc đối ABO+ACO=180 độ
=> tứ giác ABOC là tứ giác nội tiếp
do đó A;B;O;C cùng thuộc 1 đường tròn đường kính OA
d) vì OA=OE ==> tam giác OAE cân tạo O ==> góc \(OAE=\frac{180-AOE}{2}\) (1)
TƯƠNG TỰ tam giác AOH cân tại O ==> GÓC \(AOH=\frac{180-AOH}{2}\)(2)
VÌ AE>AH ==> góc AOE> góc AOH (3)
TỪ (1) ;(2) VÀ (3) ==> góc OAE <OAH
phải là cát tuyến AMN và APQ chứ sao là tiếp tuyến được