K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)

Đặt \(b_i=-a_i\left(1\le i\le51\right)\)

Xét 102 số : \(a_i\)và \(b_i\)

Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)

=> \(a_i+a_j⋮100\)

13 tháng 1 2022
Qwertyuiopasdfghjklmnbvcxz1234567890@#₫_&-+()/*"':;!?~`|•√π÷׶∆£€$¢^°={}\©%®™✓[]><
28 tháng 6 2021

undefined

bạn chép đúng k

31 tháng 12 2016

Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.

     Ta chia 4 số dư trên thành 2 nhóm:

  + Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.

  + Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.

Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.

  => Tổng của chúng chia hết cho 12.

Trong 3 số thì ít nhất phải có 2 số có cùng số dư.

  => Hiệu của chúng chia hết cho 12.