\(A=2x^2+\left|7x-1\right|-\left(-5-x+2x^2\right)\)

a) Thu gọn A

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

a, Với 7x - 1 \(\ge\)0 <=> x \(\ge\)\(\frac{1}{7}\) thì |7x - 1| = 7x - 1

lúc đó A = 2x2 + (7x - 1) - 5 + x - 2x2 = 8x - 6

Với 7x - 1 < 0 <=> x < \(\frac{1}{7}\)thì |7x - 1| = 1 - 7x

lúc đó A = 2x2 + (1 - 7x) - 5 + x - 2x2 = -6x - 4

b, Xét 2 trường hợp

TH1: x \(\ge\)\(\frac{1}{7}\) thì 8x - 6 = 2 <=> 8x = 8 <=> x = 1 (thỏa mãn)

TH2: x < \(\frac{1}{7}\) thì -6x - 4 = 2 <=> -6x = 6 <=> x = -1 (thỏa mãn)

9 tháng 11 2016

a, \(x-2x^2+2x^2-x+4=4\)

b,\(x^2-5x-x^2-2x+7x=0\)

c,\(x^2-x+1\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

19 tháng 4 2018

a) b)c)PT vô nghiệm

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

18 tháng 7 2015

cái này đúng

a) f(x)=x.(1-2x)+(2x2-x+4)

         =x-2x2+2x2-x+4

         =-2x2+2x2+x-x+4

         =40

=> đa thức f(x) vô nghiệm

b) g(x)=x.(x-5)-x(x+2)+7x

=x2-5x-x2-2x+7x

=x2-x2-5x-2x+7x

=0

=> đa thức g(x) có vô số nghiệm

c) h(x)=x(x-1)+1

         =x2-x+1

         =x2-1/2x-1/2x+1/4+3/4

         =x.(x-1/2)-1/2.(x-1/2)+3/4

          =(x-1/2)(x-1/2)+3/4

          =(x-1/2)2+3/4

Vì (x-1/2)20 nên (x-1/2)2+3/4>0 

hay h(x) >0 

Vậy h(x) vô nghiệm

18 tháng 7 2015

a; 

F(x) = 0  =>  x ( 1-2x) + (2x^2 - x + 4) = 0 

=> x - 2x^2 + 2x^2 -x + 4 = 0 

=> 0x + 4 = 0  (loại)

=> F(x)  vô nghiệm

24 tháng 4 2017

a)Tính ra sẽ đc 

A= x-5+|7x-1|

xét 2 trường hợp

1. |7x-1| có x >=1/7

=> A= x-5+7x-1

= 8x-6

2. |7x-1| có x <1/7

=> A= x-5-(7x-1)

= -6x-4

b) thay A=2 vào từng trường hợp trên

=> A= 8x-6=2

=> x=1 > 1/7 thoả mãn 

hoặc A= -6x-4=2

=> x = -1 <1/7 thoả mãn

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

21 tháng 4 2017

a) A(x)= \(-2x^4+x^2-x-7-2\)

B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)

b) Thay số:A(x)

\(1^2-1-2-2\cdot1^4+7=3\)

B(x)

\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)

c)\(6x^3-2x^3-7x-12-2\)