Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\frac{2y}{5\left(x+y\right)^2}\)
2) \(\frac{15x\left(x+y\right)^2}{20x^2\left(x+5\right)}=\frac{3\left(x^2+2xy+y^2\right)}{4x\left(x+5\right)}=\frac{3\left(x+y\right)^2}{4x^2+20x}\)
3) \(\frac{15x\left(x-y\right)}{3\left(y-x\right)}=\frac{5x\left(x-y\right)}{-3\left(x-y\right)}=-\frac{5x}{3}\)
4)\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{\left(y-x\right)\left(x+y\right)}{\left(x-y\right)^3}=\frac{-\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}=\frac{-\left(x+y\right)}{\left(x-y\right)^2}\)
\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)
----------------------------------------
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)
------------------------------------------
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)
Bài 1:
a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c)Đề sai hoàn toàn
d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)
f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)
g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)
i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)
bài 1
a) ta có: \(8x^3+12x^2y-2xy^2-3y^3\)
\(=\left(8x^3+12x^2y\right)-\left(2xy^2+3y^3\right)\)
\(=4x^2\left(2x+3y\right)-y^2\left(2x+3y\right)\)
\(=\left(2x+3y\right)\left(4x^2-y^2\right)\)
\(=\left(2x+3y\right)\left(2x-y\right)\left(2x+y\right)\)