K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\) có:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{a^2b}{b}+\dfrac{b^2c}{c}+\dfrac{c^2a}{a}\)

\(=a^2+b^2+c^2\ge ab+bc+ca\)

Dấu " = " khi a = b = c = 1

Vậy...

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

\(\frac{a^2+bc}{b+c}+\frac{b^2+ac}{c+a}+\frac{c^2+ab}{a+b}\geq a+b+c\)

\(\Leftrightarrow \frac{a^2+bc}{b+c}-c+\frac{b^2+ac}{a+c}-a+\frac{c^2+ab}{a+b}-b\geq 0\)

\(\Leftrightarrow \frac{a^2-c^2}{b+c}+\frac{b^2-a^2}{a+c}+\frac{c^2-b^2}{a+b}\geq 0\)

\(\Leftrightarrow a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\geq 0\)

\(\Leftrightarrow \frac{a^2(a-b)(a+b)+b^2(b-c)(b+c)+c^2(c-a)(c+a)}{(a+b)(b+c)(c+a)}\geq 0\)

\(\Leftrightarrow a^2(a^2-b^2)+b^2(b^2-c^2)+c^2(c^2-a^2)\geq 0\)

\(\Leftrightarrow a^4+b^4+c^4-(a^2b^2+b^2c^2+c^2a^2)\geq 0\)

\(\Leftrightarrow \frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2}{2}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Áp dụng BĐT AM-GM ta có hệ quả quen thuộc sau:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Leftrightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow \frac{(a+b+c)^2}{3}\geq ab+bc+ac\Rightarrow \frac{3}{ab+bc+ac}\geq \frac{3}{\frac{(a+b+c)^2}{3}}=\frac{9}{(a+b+c)^2}\)

Do đó:

\(1+\frac{3}{ab+bc+ac}\geq 1+\frac{9}{(a+b+c)^2}\) (1)

Ta sẽ đi chứng minh \(1+\frac{9}{(a+b+c)^2}\geq \frac{6}{a+b+c}\) (2)

\(\Leftrightarrow \left(\frac{3}{a+b+c}-1\right)^2\geq 0\) (đúng)

Từ (1),(2) suy ra \(1+\frac{3}{ab+bc+ac}\geq \frac{6}{a+b+c}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

27 tháng 4 2017

Gọi cái đó là P

Đặt \(\left\{{}\begin{matrix}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=y+z\\b=z+x\\c=x+y\end{matrix}\right.\)

Thì ta có:

\(P=\dfrac{\left(x+z\right)\left(y+z\right)}{2z}+\dfrac{\left(x+y\right)\left(z+y\right)}{2y}+\dfrac{\left(z+x\right)\left(y+x\right)}{2x}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow2x^2y^2+2y^2z^2+2z^2x^2-2xyz^2-2yzx^2-2zxy^2\ge0\)

\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0\) (đúng)

\(\RightarrowĐPCM\)

13 tháng 1 2018

Ta có:

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{1^2}{a^3\left(b+c\right)}+\dfrac{1^2}{b^3\left(c+a\right)}+\dfrac{1^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{a^2b^2c^2}{a^3\left(b+c\right)}+\dfrac{a^2b^2c^2}{b^3\left(c+a\right)}+\dfrac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{b^2c^2}{a\left(c+b\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{3}{2}\)

Áp dụng BĐT Svacxo ta có:

\(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)}\) \(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)}{2}\) (1)

Chứng minh: \(\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\Leftrightarrow ab+bc+ca\ge3\)

Áp dụng BĐT Cosi ta có:

\(ab+bc+ca\ge3\sqrt[3]{ab.bc.ca}\)

\(ab+bc+ca\ge3\) (2)

Từ (1) và (2)

=> ĐPCM

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

29 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^6}{a^3+a^2b+ab^2}+\dfrac{b^6}{b^3+b^2c+bc^2}+\dfrac{c^6}{c^3+ac^2+a^2c}\)

\(\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+a^2b+ab^2+b^3+b^2c+bc^2+c^3+ac^2+a^2c}\)

\(=\dfrac{\left(a^3+b^3+c^3\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}\). Cần chứng minh BĐT

\(\dfrac{\left(a^3+b^3+c^3\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}\ge\dfrac{a^3+b^3+c^3}{3}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}\ge\dfrac{1}{3}\Leftrightarrow3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Lại xài BĐT Holder ta có:

\(\left(1+1+1\right)\left(1+1+1\right)\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Rightarrow3\left(a^3+b^3+c^3\right)\ge\dfrac{\left(a+b+c\right)^3}{3}\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\ge a^2+b^2+c^2\)

BĐT cuối nên ta có cả bài này sai. Ai có cách khác hay soi lỗi hộ thì tks trước :v

29 tháng 7 2017

@Xuân Tuấn Trịnh và những bạn khác nữa giúp mình đi