Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)54x275+825x15+275 b)(15+17+19+...+57+59)x(n:1-nx1)
= 54x275+275x3x15+275 = A x (n-n)
= 54x275+275x45+275 = A x 0
= 275x(54+45+1) = 0
= 275x100
=27500
Cảm ơn rất nhiều vì mk cũng có câu hỏi giống nguyễn huyền trang
= 0 vì dấu ngoặc đầu tiên giữ nguyên dấu ngoặc còn lại tính như sau : n : 1 = n
n x 1 = n mà n- n = 0 = > Kết quả =0
Ta có:
\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)
Ta lại có:
\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)
\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)
\(=\frac{1.2.3...36}{1.2.3...36}=1\)
Từ đây ta suy ra được
\(A-B=1-1=0\)
a, \(\frac{2}{3}\).\(\frac{15}{17}\)+\(\frac{2}{3}\).\(\frac{2}{17}\)
= \(\frac{2}{3}\).( \(\frac{15}{17}\)+ \(\frac{2}{17}\))
= \(\frac{2}{3}\). 1
=\(\frac{2}{3}\)
b,\(\frac{20}{19}\):\(\frac{3}{7}\)- \(\frac{1}{19}\): \(\frac{3}{7}\)
= ,\(\frac{20}{19}\).\(\frac{7}{3}\)- \(\frac{1}{19}\).\(\frac{7}{3}\)
= \(\frac{7}{3}\).(\(\frac{20}{19}\)-\(\frac{1}{19}\))
=\(\frac{7}{3}\).1
=\(\frac{7}{3}\)
A. \(\frac{2}{3}.\frac{15}{17}+\frac{2}{3}.\frac{2}{17}\)
=\(\frac{2}{3}.\left(\frac{15}{17}+\frac{2}{17}\right)\)
=\(\frac{2}{3}.1\)
=\(\frac{2}{3}\)
B. \(\frac{20}{19}:\frac{3}{7}-\frac{1}{19}:\frac{3}{7}\)
=\(\left(\frac{20}{19}-\frac{1}{19}\right):\frac{3}{7}\)
=1:\(\frac{3}{7}\)
=\(\frac{7}{3}\)
( 15 + 17 + 19 + ... + 57 + 59 ) x ( n : 1 - n x 1 )
= ( 15 + 17 + 19 + ... + 57 + 59 ) x 0
= 0