K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Đặt A = 1/3 + 2/3² + 3/3³ + 4/3^4 + ... + 100/3^100 

=> 3A= 1 + 2/3 + 3/3² + 4/3³ + .... + 100/3^99 

=> 3A-A = 1 + (2/3 - 1/3) + (3/3² - 2/3²) +...+ (100/3^99 - 99/3^99) - 100/3^100

=> 2A= 1+ 1/3 + 1/3² + 1/3³ +...+ 1/3^99 - 100/3^100

Đặt B = 1/3 + 1/3² + 1/3³ +...+ 1/3^99 

=> 3B = 1 + 1/3 + 1/3² + 1/3³ +...+ 1/3^98

=> 2B = 1 - 1/3^99 => B = (1 - 1/3^99)/2

Thay vào 2A => 2A= 1+ 1/2 - 1/(2x3^99) - 100/3^100 < 1+ 1/2 = 3/2 

=> A < 3/4

....

15 tháng 7 2016

Ý Trước

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

26 tháng 9 2017

Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^4}...+\dfrac{100}{3^{100}}\)

3A = \(1+\dfrac{2}{3}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{99}}\)

\(\rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

6A = \(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\rightarrow4A=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)

4A = \(3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+ \dfrac{100}{3^{100}}\)

4A = 3 - \(\dfrac{203}{3^{100}}\) < 3

\(\Rightarrow\) A < \(\dfrac{3}{4}\) ( đpcm )