Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi bốn phần được chia lần lượt là a,b,c,d
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{4}=\dfrac{c}{5}\\\dfrac{c}{6}=\dfrac{d}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}\end{matrix}\right.\Leftrightarrow\dfrac{a}{16}=\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{16}=\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}=\dfrac{a+b+c+d}{16+24+30+35}=\dfrac{420}{105}=4\)
Do đó: a=64; b=96; c=120; d=140
?2.(trang 111)
a) Xét \(\Delta ABC\) có:
^A +^B + ^C= \(180^o\) ( định lí tổng ba góc của một tam giác)
\(\Rightarrow\) ^C = \(180^o\)- ^A - ^B (1)
Xét \(\Delta MND\) có:
^M + ^N + ^P = \(180^o\) ( định lí tổng ba góc cuả một tam giác)
\(\Rightarrow\) ^P = \(180^o\)- ^M - ^N (2)
Mà ^A = ^M ; ^B = ^N (3)
Từ (1);(2);(3) \(\Rightarrow\) ^C= ^P
Xét \(\Delta ABC\) và \(\Delta MNP\) ta có:
AB=MN (gt)
AC=MP (gt)
BC=NP (gt)
^A = ^M (gt)
^B = ^N (gt)
^C = ^P (cmt)
\(\Rightarrow\Delta ABC=\Delta MNP\)
b) Đỉnh tương ứng với đỉnh A là đỉnh N
Góc tương ứng với góc N là góc B
Cạnh tương ứng với cạnh AC là canh MP.
c) \(\Delta ACB=\Delta MPN\)
AC=MP
^B = ^N
Thu gọn rồi tính giá trị của biểu thức sau A tại x=2 và y=-1
Bài 1:
a) \(49< 7^n< 343\)
\(\Rightarrow7^2< 7^n< 7^3\)
\(\Rightarrow2< n< 3\)
\(\Rightarrow n\) không có giá trị nào
Vậy \(n\in\varnothing.\)
b) Sửa lại đề là \(9< 3^n\le243\)
\(\Rightarrow3^2< 3^n\le3^5\)
\(\Rightarrow2< n\le5\)
\(\Rightarrow\left\{{}\begin{matrix}n=3\\n=4\\n=5\end{matrix}\right.\)
Vậy \(n\in\left\{3;4;5\right\}.\)
c) \(121\ge11^n\ge1\)
\(\Rightarrow11^2\ge11^n\ge11^0\)
\(\Rightarrow2\ge n\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}n=2\\n=1\\n=0\end{matrix}\right.\)
Vậy \(n\in\left\{2;1;0\right\}.\)
Bài 2:
\(\frac{81}{625}=\frac{9^2}{25^2}=\left(\frac{9}{25}\right)^2.\)
\(\frac{81}{625}=\frac{3^4}{5^4}=\left(\frac{3}{5}\right)^4.\)
Chúc bạn học tốt!
Bài 4 :
\(A=3^2+6^2+...+30^2\)
\(=1.3^2+2^2.3^2+...+3^2.10^2\)
\(=3^2\left(1+2^2+...+10^2\right)\)
\(=9.385=3465\)
Vậy A = 3465
xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không
S = 1/2 + 1/3 + 1/4 +...... + 1/ n
=> 1/ S = 2 + 3 + 4 +......+n
=> 1 = ( 2+3+4 +......+ n)S
=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n)
vì n thuộc n nên ( 2+3+4+...+ n) sẽ là số nguyên
=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên
Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1
có 2 Th để dấu bằng xảy ra là
2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1
Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n
Th1 không thể xảy ra vì 2=3+4=...+n khác 1
nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số
Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh
\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow\left\{\begin{matrix}x=9.\left(-3\right)=-27\\y=7.\left(-3\right)=-21\\z=3.\left(-3\right)=-9\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x.y.z}{2.3.5}=\frac{-30}{30}=-1\)
\(\Rightarrow\)\(x=-1.2=-2\)
\(\Rightarrow\)\(y=-1.3=-3\)
\(\Rightarrow\)\(z=-1.5=-5\)