Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4x-1+5.4x-2=576
=> 4x-1(1+5.\(4^{-1}\))=576
=> 4x-1.\(\dfrac{9}{4}\)=576
=> 4x-1=256=44
=> x-1=4
=> x=5
b) (2x-1)6=(2x-1)8
=> (2x-1)6 - (2x-1)8=0
=> (2x-1)6(1- (2x-1)2)=0
=>\(\left[{}\begin{matrix}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.=>\left[{}\begin{matrix}2x=1\\\left(2x-1\right)^2=1hoặc\left(2x-1\right)^2=-1\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x-1=1hoặc2x-1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=2hoặc2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1hoặcx=0\end{matrix}\right.\)
Vậy x\(\in\)\(\left\{\dfrac{1}{2},1,0\right\}\)
c) (2x-5)2000+(3y+4)2002 \(\le0\)
Có (2x-5)2000\(\ge\)0 với mọi x
(3y+4)2002\(\ge\)0 với mọi y
=> (2x-5)2000+(3y+4)2002 \(\ge\) 0
=> Để (2x-5)2000+(3y+4)2002 \(\le0\) thì (2x-5)2000+(3y+4)2002 =0
=> \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.=>\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy x=\(\dfrac{5}{2}\);y=\(\dfrac{-4}{3}\)
Bài 2:
Có A=2100-299+298-...+22-2
=> 2A=2(2100-299+298-...+22-2)
=> 2A= 2101-2100+299-...+23-22
=> 2A= 2101-2100+299-...+23-22
+A= 2100-299+298-...+22-2
=> 3A= 2101-2
=> A=\(\dfrac{2^{101}-2}{3}\)
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a) \(x-1=27\)
\(\Rightarrow x=27+1\)
\(\Rightarrow x=28\)
Vậy \(x=28.\)
b) \(x^2+x=0\)
\(\Rightarrow x.\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{0;-1\right\}.\)
c) \(\left(2x+1\right)^2=25\)
\(\Rightarrow\left(2x+1\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow2x+1=\pm5.\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4:2\\x=\left(-6\right):2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{2;-3\right\}.\)
d) \(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow2x-3=\pm6.\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9:2\\x=\left(-3\right):2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{9}{2};-\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
b: \(\dfrac{2x+3}{3-x}\le0\)
\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)
=>x>3 hoặc x<=-3/2
c: \(\dfrac{x+5}{x+3}>1\)
\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)
=>2/(x+3)>0
=>x+3>0
hay x>-3
a: =>0,2-x=7
=>x=-6,8
b: =>x=6 hoặc x=-6
c: =>x^2=5
hay \(x=\pm\sqrt{5}\)
d: =>x^2=2
hay \(x=\pm\sqrt{2}\)
e: =>x-1=2 hoặc x-1=-2
=>x=-1 hoặc x=3
f: =>2x+1=7 hoặc 2x+1=-7
=>2x=-8 hoặc 2x=6
=>x=3 hoặc x=-4
a) *Thay x=-1 vào P:
1+2+1=4. Vậy P(-1)=4.
* Thay x=\(\dfrac{1}{2}\) vào P:
\(\left(\dfrac{1}{2}\right)^4+2.\left(\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)
*Thay x=-2 vào Q:
\(\left(-2\right)^4+4.\left(-2\right)^3+2.\left(-2\right)^2-4\left(-2\right)+1=1\)
Vậy Q(-2)=1.
*Thay x=1 vào Q:
1+4+2-4+1=4.
Vậy Q(1)=4.
b) Đặt t=x2\(\left(t\ge0\right)\)
\(\Rightarrow t^2+2t+1=\left(t+1\right)^2\ge0\)
Vậy Pmin=0\(\Leftrightarrow t=-1\left(KTM\right)\)
c) Q(x)-P(x)=\(4x^3-4x\)
Để Q(x)-P(x)=0 thì \(4x^3-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0;-1;1.
Câu b thì đơn giản là \(\left\{{}\begin{matrix}x^4\ge0\\2x^2\ge0\end{matrix}\right.\) \(\Rightarrow x^4+2x^2\ge0\)
\(\Rightarrow x^4+2x^2+1\ge1\Rightarrow P\left(x\right)_{min}=1\) khi \(x=0\)