K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

=>\(B=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 2-\dfrac{1}{50}\)

=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{50}\right)=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\)

25 tháng 4 2024

\(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{2}.\dfrac{1}{50}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]\)

Ta có:

\(\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2.2}< \dfrac{1}{2.1}=\dfrac{2-1}{2.1}=\dfrac{2}{2.1}-\dfrac{1}{2.1}=1-\dfrac{1}{2}\)

\(\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{3.2}=\dfrac{3-2}{3.2}=\dfrac{3}{3.2}-\dfrac{2}{3.2}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\left(\dfrac{1}{50}\right)^2=\dfrac{1}{50.50}< \dfrac{1}{50.49}=\dfrac{50-49}{50.49}=\dfrac{50}{50.49}-\dfrac{49}{50.49}=\dfrac{1}{49}-\dfrac{1}{50}\)

Khi đó

\(1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]< \dfrac{1}{4}.2=\dfrac{1}{2}\)

Vậy \(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2< \dfrac{1}{2}\left(đpcm\right)\)

Tick cho mk nha :>>

A=1/4(1/1+1/2^2+...+1/50^2)

=>A=1/4+1/4*(1/2^2+...+1/50^2)

=>A<1/4+1/4*(1-1/2+1/2-1/3+...+1/49-1/50)

=>A<1/4+1/4*49/50=99/200<1/2

12 tháng 3 2019

C/m nó nhỏ hơn 3/4 hả bạn ?

Có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                      \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                        \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\)

11 tháng 2 2016

2x(3y-2)+(3y-2) = (2x+1)(3y-2) = -55.Lập bảng :

2x+1-55-11-5-1151155
3y-2151155-55-11-5-1
2x-56-12-6-2041054
3y371357-53-9-31
x-28-6-3-102527
y1  19 -3-1 

Vậy (x;y) = (-28;1);(-1;19);(2;-3);(5;-1)

12 tháng 2 2016

làm giúp mình câu b) nhé ! cảm ơn bạn nhiều !!!

8 tháng 7 2021

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)(ĐPCM)

8 tháng 7 2021
Mn ơi giúp mình đi mà
12 tháng 12 2019

a) Ta có : A=2+22+23+...+210

                  =(2+22)+(23+24)+...+(29+210)

                 =2(1+2)+23(1+2)+...+29(1+2)

                =2.3+23.3+...+29.3

Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3

hay A\(⋮\)3

Vậy A\(⋮\)3.

12 tháng 12 2019

b) Ta có : A=22+24+26+...+220

                  =(22+24)+(26+27)+...+(218+220)

                  =22(1+22)+26(1+22)+...+218(1+22)

                 =22.5+26.5+...+218.5

Vì 5\(⋮\)5 nên 22.5+26.5+...+218.5\(⋮\)5

hay A\(⋮\)5

Vậy A\(⋮\)5.

3 tháng 10 2018

bạn viết sai đề rồi 2^210=2^2010

\(2A=2.\left(1+2+....+2^{2010}\right)\)

\(2A-A=\left(2+2^2+...+2^{2011}\right)-\left(1+2+...+2^{2010}\right)\)

\(A=2^{2011}-1\)

\(B=2^{2011}-1=>A=B\)

28 tháng 1 2024

\(S=1+2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2022}+2^{2023}\)

trừ vế với vế ta được : 

\(2S-S=2^{2023}-1\)

\(\Rightarrow S=2^{2023}-1\)

22 tháng 9 2016

Ta có:  2E= 2+2^2+2^3+2^4+...+2^10

2E - E = (2+2^2+2^3+2^4+...+2^10) - (1+2+2^2+2^3+...+2^9)

E = 2^10-1

22 tháng 9 2016

\(E=1+2+2^2+2^3+...+2^9\)

=>\(2E=2+2^2+2^3+2^4+...+2^{10}\)

=>\(2E-E=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)

=>\(E=2^{10}-1=1024-1=1023\)