Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(y=-x^3+3x^2+5\)
\(\Rightarrow y'=-3x^2+6x=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\)
\(x=0\rightarrow y=5\), ta có điểm cực trị \(A=(0,5)\)
\(x=2\rightarrow y=9\), ta có điểm cực trị \(B=(2,9)\)
Do đó:
\(AB=\sqrt{(0-2)^2+(5-9)^2}=2\sqrt{5}\)
\(OA=\sqrt{0^2+5^2}=5\)
\(OB=\sqrt{2^2+9^2}=\sqrt{85}\)
Sử dụng công thức Herong: \(S=\sqrt{p(p-a)(p-b)(p-c)}\) ta suy ra
\(S_{OAB}=5\)
Lời giải:
Với PT bậc 2, nếu \(z_1\) là một nghiệm phức thì nghiệm \(z_2\) còn lại chính là số phức liên hợp của \(z_1\). Khi đó áp dụng hệ thức Viete:
\(\left[{}\begin{matrix}W=\dfrac{z_1+2016^{2017}}{z_2+1}=\dfrac{z_1+z_1z_2}{z_2+1}=z_1\\W=\dfrac{z_2+2016^{2017}}{z_1+1}=\dfrac{z_2+z_1z_2}{z_1+1}=z_2\end{matrix}\right.\)
Vì \(z_1,z_2\) là hai số liên hợp của nhau nên có phần thực như nhau. Do đó phần thực của \(W\) chính bằng \(\frac{z_1+z_2}{2}=1\) (theo hệ thức Viete)
Đáp án B
Ủa 2 kết quả giống nhau mà? Có sai chỗ nào đâu bạn?
Làm sao để biết nó bằng nhau vậy ạ..Mình calc x mà nó khác nhau
x s K A N B H D C
Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC).
\(\Rightarrow\widehat{SCH}=60^0\)
Gọi D là trung điểm cạnh AB. Ta có :
\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)
\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)
\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)
\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)
Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)
Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)
\(AH=\frac{2a}{3}\); \(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)
\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)
Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)
Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF
a: BC=10cm
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
hay AB=AD
c: Xét tứ giác ABED có
H là trung điểm của AE
H là trung điểm của BD
Do đó: ABED là hình bình hành
Suy ra: AB//ED
hay ED\(\perp\)AC
HA\(=2HB\Rightarrow HA=\dfrac{2a}{3}\)
V\(=\dfrac{1}{12}\)
=3 đúng ko ??
= bao nhiêu tuỳ theo IQ chúng nó