Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=2-\frac{1}{n+1}\)
=> \(lim\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)=lim\left(2-\frac{1}{n+1}\right)=2\)( khi n tiến tới vô cùng )
Ta có : \(3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+\left(n-2\right)\left(n-1\right)\left[n-\left(n-3\right)\right]+\left(n-1\right)n.\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+\left(n-2\right)\left(n-1\right)n-\left(n-3\right)\left(n-2\right)\left(n-1\right)+\left(n-1\right)n\left(n+1\right)-\left(n-2\right)\left(n-1\right)n\)
\(=\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow S=\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
Vậy : \(S=\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)
b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)
c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)
d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)
e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)
f/ Ta có công thức:
\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)
\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)
g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)
h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)
ĐK của pt là \(n\ge2\)
\(\left(1+x\right)^n=C_n^0+x.C_n^1+x^2.C_n^2+x^3.C^3_n+x^4.C_n^4+...+x^n.C_n^n\)
\(\Rightarrow n\left(1+x\right)^{n-1}=C_n^1+2x.C_n^2+3x^2.C^3_n+4x^3.C_n^4...+n.x^{n-1}.C^n_n\) ( đạo hàm hai vế )
\(\Rightarrow n\left(n-1\right)\left(x+1\right)^{n-2}=2.C_n^2+2.3.x.C_n^3+3.4.x^2.C_n^4+...+\left(n-1\right)n.x^{n-2}.C_n^n\) ( đạo hàm hai vế )
Thay x=1 ta được: \(n\left(n-1\right).2^{n-2}=2.C_n^2+2.3.C^3_n+3.4.C_n^4+...+\left(n-1\right).n.C^n_n\)
\(\Leftrightarrow n\left(n-1\right).2^{n-2}=64n.\left(n-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n\left(n-1\right)=0\\2^{n-2}=64\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=0;n=1\left(ktm\right)\\n=8\left(tm\right)\end{matrix}\right.\)
Vậy \(n=8\)
\(=lim\frac{2.2^{5n}+3}{9.3^{5n}+1}=lim\frac{2.\left(\frac{2}{3}\right)^{5n}+3\left(\frac{1}{3}\right)^{5n}}{9+\left(\frac{1}{3}\right)^{5n}}=\frac{0}{9}=0\)
\(b=lim\frac{\left(-\frac{1}{3}\right)^n+4}{-1\left(-\frac{1}{3}\right)^n-2}=\frac{4}{-2}=-2\)
\(c=1+lim\frac{-n}{n^2+\sqrt{n^4+n}}=1+lim\frac{-\frac{1}{n}}{1+\sqrt{1+\frac{1}{n^3}}}=1+\frac{0}{2}=1\)
\(-2\le2cosn^2\le2\Rightarrow\frac{-2}{n^2+1}\le\frac{2cosn^2}{n^2+1}\le\frac{2}{n^2+1}\)
Mà \(lim\frac{-2}{n^2+1}=lim\frac{2}{n^2+1}=0\Rightarrow lim\frac{2cosn^2}{n^2+1}=0\)
\(d=lim\left[n\left(\sqrt{1-\frac{2}{n^2}}-1+1-\sqrt[3]{1+\frac{2}{n^2}}\right)\right]\)
\(=lim\left[n\left(\frac{-\frac{2}{n^2}}{\sqrt{1-\frac{2}{n^2}}+1}-\frac{\frac{2}{n^2}}{\sqrt[3]{\left(1+\frac{2}{n^2}\right)^2}+\sqrt[3]{1+\frac{2}{n^2}}+1}\right)\right]\)
\(=lim\left(\frac{-\frac{2}{n}}{\sqrt{1-\frac{2}{n^2}}+1}-\frac{\frac{2}{n}}{\sqrt[3]{\left(1+\frac{2}{n^2}\right)^2}+\sqrt[3]{1+\frac{2}{n^2}}+1}\right)=\frac{0}{2}-\frac{0}{1+1+1}=0\)
a.
\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)
b.
\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)
- Với \(n=1\Rightarrow1.2=\frac{1.2.3}{3}\) (đúng)
- Giả sử đúng với \(n=k\) hay \(1.2+...+k\left(k+1\right)=\frac{k\left(k+1\right)\left(k+2\right)}{3}\)
Ta cần chứng minh nó đúng với \(n=k+1\) hay:
\(1.2+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy:
\(1.2+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)\)
\(=\frac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\)
\(=\left(k+1\right)\left(k+2\right)\left[\frac{k}{3}+1\right]=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\) (đpcm)