Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
A=1/21+1/22+1/23+1/24+1/25+1/26+1/27+1/28
1/2A=1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29
A-1/2A=(1/2+1/22+1/23+1/24+1/25+1/26+1/27+1/28)-(1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29)
1/2A=1/2-1/29
A=2(1/2-1/29)
A=1-1/28
A=28-1
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2\times A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(A=1-\frac{1}{128}\)
\(A=\frac{127}{128}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(2\times B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
\(B=1-\frac{1}{16}=\frac{15}{16}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{64}\)
1+\(\frac{1}{4}\)+\(\frac{1}{8}\)+\(\frac{1}{16}\)=\(\frac{23}{16}\)
2__\(\frac{1}{8}\)__\(\frac{1}{12}\)__\(\frac{1}{16}\)=\(\frac{83}{48}\)
1 + 1/4 + 1/8 + 1/16 = 1,4375
phép tính thứ hai thì chịu
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}\)
\(=\frac{1}{4}-\frac{1}{8}-\frac{1}{16}=\frac{1}{8}-\frac{1}{16}=\frac{1}{16}\)
@@
1-1/2-1/4-1/8-1/16
\(=\) \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}\)
\(=\) \(1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\)
\(=\) \(1-\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)\)
\(=\) \(1-\frac{15}{16}\)
\(=\) \(\frac{1}{16}\)
CHÚC BẠN HỌC TỐT !
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Đặt tổng trên = A
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\right)\)
\(A=1-\frac{1}{152}\)
\(A=\frac{151}{152}\)
\(\text{Đặt tổng trên = A}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\right)\)
\(A=1-\frac{1}{152}\)
$A=\frac{151}{152}$