Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy.....
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Cho hai số biết rằng bớt số thứ nhất 28 đơn vị thì được số thứ hai va 1/3 số thứ nhất bằng 3/5 số thứ hai.Tìm hai số đó
Mình giải theo lớp 6
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)
Ta loại các cặp số đổi của nhau như : \(-\frac{1}{2}\)và \(\frac{1}{2}\)thì còn
\(\frac{1}{1}-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......+1/2016-1/2017
=1-1/2017
=2016/2017
xong rồi bạn ạ
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{99\times100}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)
\(\frac{100-1}{100}\)
\(\frac{99}{100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)
\(\frac{100-1}{100}\)
\(\frac{99}{100}\)
1/1x2 + 1/2x3 + 1/3x4 +1/4x5 +1/5x6
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6 = 5/6
\(\frac{1}{1x2}+\frac{1}{1x3}+...+\frac{1}{999x1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
= 1 - 1 /2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
ta có :\(\frac{1}{1\cdot2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
......
\(\frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
=> \(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>A=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=1+(\(\frac{-1}{2}\)+\(\frac{1}{2}\))+(\(\frac{-1}{3}\)+\(\frac{1}{3}\))+...+(\(\frac{-1}{2009}\)+\(\frac{1}{2009}\))-\(\frac{1}{2010}\)
=1+0+0+...+0-\(\frac{1}{2010}\)
=1-\(\frac{1}{2010}\)
=\(\frac{2010}{2010}\)-\(\frac{1}{2010}\)
=\(\frac{2009}{2010}\)
lớp 4 ghê nhỉ đã học bài này rùi tui lớp 6 mà mới học bài này