Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cùng nhân tử với 2014>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Theo đầu bài ta có:
\(\hept{\begin{cases}A=\frac{10^{12}-1}{10^{13}-1}\Rightarrow10A=\frac{10^{13}-10}{10^{13}-1}=\frac{\left(10^{13}-1\right)-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\\B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\end{cases}}\)
Do \(1-\frac{9}{10^{13}-1}< 1< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)
\(11^{12}< 11^{13}\)
\(7^4< 8^4\)
\(3^4>4^3\)
\(2^6>6^2\)
\(5^{15}>2^{30}\)
Ta có :
\(244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>81^{13}=\left(3^4\right)^{13}=3^{52}>80^{13}\)
Vậy : \(244^{11}>80^{13}\)
hok tốt
Áp dụng công thức:a/b<1=>a/b<a+n/b+n (a,b,n thuộc Z,b,n khác 0)Ta có:
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10(10^10+1)/10(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B. chúc học tốt
\(244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>81^{13}=\left(3^4\right)^{13}=3^{52}>80^{13}\)
Vậy 24411 > 8013
Ta có: 1113=1112+1=1112.11
Ta có: 1112=1112
=>1112<1112.11
Vậy 1112<1113
\(^{^{11^{12}}}\)< \(11^{13}\)