K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(2A=1-\frac{1}{99}=\frac{98}{99}\)

vậy \(A=\frac{98}{99}:2=\frac{49}{99}\)

chúc bạn học tốt

5 tháng 3 2017

Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{97.99}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

29 tháng 3 2018

   1/1x3 + 1/3x5 + 1/5x7 + ...............................+ 1/97x99

=1-1/3 + 1/3 - 1/5 + 1/5 - 1/7 +.............................+ 1/97-1/99

=1-1/99

=98/99

3 tháng 8 2015

=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100

=1-1/2-1/99-1/98=2327/4851

1 tháng 8 2016

\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)

\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)

\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)

\(=\frac{2327}{4851}\)

1 tháng 8 2016

Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100

     4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100

          =(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)

          =(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)

         =(1/1-1/99)-(1/2-1/100)

         4A=98/99 - 99/100

         A= (98/99-99/100) :4

11 tháng 10 2023

\(S=\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{97\cdot99}\right)+\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\right)-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\cdot\dfrac{98}{99}+\dfrac{1}{2}\cdot\dfrac{49}{100}-\dfrac{49}{99}\)

\(=\dfrac{49}{200}\)

12 tháng 10 2023

Cảm ơn bạn

5 tháng 8 2016

=>S<1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                                  =1-(1/2-1/2)-(1/3-1/3)-...-(1/99-1/99)-1/100

                                                                  =1-1/100 <1

=>S<1

Vậy S<1

19 tháng 3 2023

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(B=\dfrac{1}{1}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{7}+...+\dfrac{1}{97}\cdot\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{99}\)

\(B=\dfrac{99}{99}-\dfrac{1}{99}\)

\(B=\dfrac{98}{99}\)

#YVA

22 tháng 3 2023

B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

B=\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{97}-\dfrac{1}{99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right):2\)

B=\(\dfrac{98}{99}:2\)

B=\(\dfrac{49}{99}\)