Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)
\(=1.100+2.99+3.98+...+99.2+100.1\)
Do đó kết quả của phép tính cần tìm là:
\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)
a)( 100 - 1^2 ) * ( 100 - 2^2 ) * ( 100 - 3^2 ) * ...... * ( 100 -50^2 )=( 100 - 1^2 ) * ( 100 - 2^2 ) * ( 100 - 3^2 ) * ...... *(100-10^2)....* ( 100 -50^2 )=( 100 - 1^2 ) * ( 100 - 2^2 ) * ( 100 - 3^2 ) * ...... *(0)....* ( 100 -50^2 )=0
b)1^0 + 1^2 + 1^3+ 1^4 +..........+1^99=1+1+1+1+....+1+1+1(có 100 số 1)=100x1=100
Ta có:
122<11.2;132<12.3;...;11002<199.100122<11.2;132<12.3;...;11002<199.100
Đặt:
A=1+122+132+...+11002�=1+122+132+...+11002
→A<1+11.2+12.3+...+199.100=1+11−12+12−13+...+199−1100=2−1100<2→�<1+11.2+12.3+...+199.100=1+11-12+12-13+...+199-1100=2-1100<2
→1+122+132+...+11002<2→1+122+132+...+11002<2
→→đpcm
nhớ tick cho mik nha
cách 2 :
Đặt 1+1/2^2+1/3^2+...+1/100^2=A
Có A<1+1/1.2+1/2.3+1/3.4+....+1/99.100
=>A<1+1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
=>A<1+1-1/100
=>A<2-1/100<2
nhớ tickkk