Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : Bài giải
a, \(2008^n=1=2008^0\)
\(\Rightarrow\text{ }n=0\)
b, \(32^{-n}\cdot16^n=1024\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n=2^{10}\)
\(2^{-5n}\cdot2^{4n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow\text{ }n=-10\)
c, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n=\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^6\cdot2^6=2^{12}\)
\(\Rightarrow\text{ }n=12\)
a: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
=>\(\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
b: \(\Leftrightarrow-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-8}-\dfrac{1}{x-8}+\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
=>1/x-1=3/4
=>x-1=4/3
=>x=7/3
Bài 1 :
(x-4)2= (x-4)4
=> (x-4)2 - (x-4)4 = 0
=>(x-4)2 . [ 1 -(x-4)2 ] =0
=> \(\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x-4=0\\\left[{}\begin{matrix}\left(x-4\right)=1\\x-4=-1\end{matrix}\right.\end{matrix}\right.\)
Sau đó tự tính nhé
Chúc bạn học tốt !
\(M=\left(-x-8\right)-\left(-3x+10\right)-\left(x-10\right)\\ =-x-8+3x-10-x+10\\ =\left(-x+3x-x\right)+\left(-8-10+10\right)\\ =x-8\)
\(N=-\left(x-100\right)+\left(-3x+10\right)-\left(-x-100\right)\\ =-x+100+-3x+10+x+100\\ =\left(-x+-3x+x\right)+\left(100+10+100\right)\\ =-3x+210\\ =3\left(-x+70\right)\)
\(Q=100-\left(-4x+1\right)-\left(99+x\right)-\left(x-1\right)\\ =100+4x-1-99-x-x+1\\ =\left(4x-x-x\right)+\left(100-1-99+1\right)\\ =2x+1\)
Giả sử điểm 11 hs ko có 2 bn đạt điểm như nhau, tức có 11 loại điểm khác nhau (1)
Ta thấy ko ai dưới 10, ko ai đc 20, tức số điểm của 11 học sinh rơi vào khoảng từ 11 đến 19. Mà số điểm là số nguyên \(\Rightarrow\) có \(19-11+1=9\) loại điểm khác nhau (2)
(1) mâu thuẫn với (2)\(\Rightarrow\) đpcm
Gì chứ cái này mình làm dễ như chơi hà...