Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^8+1}{10^9+1}=\frac{1}{10}\left(\frac{10^9+10}{10^9+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^9+1}\right)\)
\(B=\frac{10^9+1}{10^{10}+1}=\frac{1}{10}\left(\frac{10^{10}+10}{10^{10}+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^{10}+1}\right)\)
\(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)
\(\Rightarrow A>B\)
Đặt \(M=\frac{10^8+1}{10^9+1}\) và \(N=\frac{10^9+1}{10^{10}+1}\)
Có : \(M=\frac{10^8+1}{10^9+1}\)
\(\Rightarrow10M=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)
Lại có : \(N=\frac{10^9+1}{10^{10}+1}\)
\(\Rightarrow10N=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)
Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\) nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10M>10N\Rightarrow M>N\)
Vậy M > N.
\(10^{10}+\frac{1}{10}^{10}=10^{10}\)
\(10^9+\frac{1}{10}^8+1=10^9+1\)
\(10^{10}>10^9+1\)
a) Ta có:
+) \(\frac{10^8}{10^7}\)-1= 108-7-1=10-1=9 (1)
+) \(\frac{10^7}{10^6}\)-1= 107-6-1=10-1=9 (2)
Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1
Vậy..
\(taco\)
\(A=\frac{10^8+1}{10^9+1}\Rightarrow10A=1+\frac{9}{10^9+1}\)
\(B=\frac{10^9+1}{10^{10}+1}\Rightarrow10B=1+\frac{9}{10^{10}+1}\)
\(Vì:\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Ta có:
\(A=\frac{10^8+1}{10^9+1}\Leftrightarrow10A=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)
\(B=\frac{10^9+1}{10^{10}+1}\Leftrightarrow10B=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)
Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10A>10B\)\(\Rightarrow A>B\)
Vậy A>B
a) - Xét trường hợp chia hết cho 2
+ Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.
- Xét trường hợp chia hết cho 3.
+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
Vậy n.(n+1).(2n+1) chia hết cho 2.
Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)
b) 10^9 + 2 = 100.....02.
Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)
c) 10^10 - 1 = 99...99
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
d) 10^8 - 1 = 99...9
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
E) 10^8 + 8 = 10...08
Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)
???? thiếu đề.....
bạn vào sửa nội dung nhak
~~~
Ta chứng minh bài toán phụ:
Nếu \(\frac{a}{b}< 1\)thì \(\frac{a}{b}< \frac{a+c}{b+c}\)
Ta có: \(a< b\)
\(\Rightarrow ac< bc\)
\(\Rightarrow ac+ba< bc+ba\)
\(\Rightarrow a.\left(b+c\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
đpcm
Áp dụng:
\(\frac{10^9+1}{10^{10}+1}< \frac{10^9+1+9}{10^{10}+1+9}=\frac{10^9+10}{10^{10}+10}=\frac{10.\left(10^8+1\right)}{10.\left(10^9+1\right)}=\frac{10^8+1}{10^9+1}\)
Vậy \(\frac{10^9+1}{10^{10}+1}< \frac{10^8+1}{10^9+1}\)
Tham khảo nhé~