K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

cho tam giác ABC có A(-2;3) vá hai đư

NV
7 tháng 5 2021

Chắc điểm D kia là C?

\(\overrightarrow{AB}=\left(4;14\right)=2\left(2;7\right)\)

\(\Rightarrow\) Đường thẳng AB nhận \(\left(7;-2\right)\) là 1 vtpt

Phương trình AB:

\(7\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow7x-2y-12=0\)

\(\overrightarrow{CB}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) đường cao AH vuông góc BC nên nhận (1;3) là 1 vtpt

Phương trình AH:

\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)

\(\overrightarrow{AC}=\left(2;8\right)=2\left(1;4\right)\Rightarrow\) đường thẳng AC nhận (4;-1) là 1 vtpt

Phương trình AC: \(4\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow4x-y-7=0\)

Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc phân giác góc A

\(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)

\(\Rightarrow\dfrac{\left|7x-2y-12\right|}{\sqrt{7^2+\left(-2\right)^2}}=\dfrac{\left|4x-y-7\right|}{\sqrt{4^2+\left(-1\right)^2}}\)

\(\Leftrightarrow\sqrt{17}\left|7x-2y-12\right|=\sqrt{53}\left|4x-y-7\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=4\sqrt{53}x-\sqrt{53}y-7\sqrt{53}\\7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=-4\sqrt{53}x+\sqrt{53}y+7\sqrt{53}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(7\sqrt{17}-4\sqrt{53}\right)x+\left(\sqrt{53}-2\sqrt{17}\right)y-12\sqrt{17}+7\sqrt{53}=0\\\left(7\sqrt{17}+4\sqrt{53}\right)x-\left(\sqrt{53}+2\sqrt{17}\right)y-12\sqrt{17}-7\sqrt{53}=0\end{matrix}\right.\)

Đây là pt 2 phân giác trong và ngoài của góc A

24 tháng 11 2019

Đáp án A

Ta có 

A thuộc ∆1 nên A( a; a+ 1).

P( 2;1) là trung điểm của đoạn AB nên B( 4-a; 1-a).

Mặt khác:

Đường thẳng AP có VTPT ( 4;-1) và qua P(2;1) nên có phương trình:

4x – y- 7 = 0

NV
17 tháng 6 2020

Câu 1: ko dịch được đề :)

Câu 2:

Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận \(\left(3;2\right)\) là 1 vtpt

Phương trình d': \(3\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-7=0\)

Câu 3:

\(\overrightarrow{CB}=\left(5;-2\right)\)

Đường thẳng AH vuông góc BC nên nhận \(\left(5;-2\right)\) là 1 vtpt

Phương trình AH:

\(5\left(x-2\right)-2\left(y+2\right)=0\Leftrightarrow5x-2y-14=0\)

4 tháng 5 2021

b, \(d\left(I;\Delta\right)=R\Leftrightarrow\dfrac{\left|-2+6+m\right|}{\sqrt{13}}=\sqrt{13}\)

\(\Rightarrow\left[{}\begin{matrix}m=9\\m=-17\end{matrix}\right.\)

 

4 tháng 5 2021

c, Dễ tìm được tọa độ A, B: \(\left\{{}\begin{matrix}A=\left(-3,-1\right)\\B=\left(2,0\right)\end{matrix}\right.\)

Phương trình tiếp tuyến tại A có dạng: \(\Delta_1:ax+by+3a+b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I,\Delta_1\right)=\dfrac{\left|-a+2b+3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{13}\)

\(\Leftrightarrow\left(2a+3b\right)^2=13a^2+13b^2\)

\(\Leftrightarrow4a^2+9b^2+12ab=13a^2+13b^2\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow3a=2b\)

\(\Rightarrow\Delta_1:2x+3y+9=0\)

Tương tự tiếp tuyến tại B: \(\Delta_2:3x-2y-6=0\)

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.b) Đi qua hai điểm M(1;-1) và N(3;2).c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).Tính khoảng cách từ điểm C đến đường thẳng AB.Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát...
Đọc tiếp

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:

a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.

b) Đi qua hai điểm M(1;-1) và N(3;2).

c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).

Tính khoảng cách từ điểm C đến đường thẳng AB.

Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:

a)   3 caïnh AB, AC, BC

b) Ñöôøng thaúng qua A vaø song song vôùi BC

c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC

d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC

e) Ñöôøng trung tröïc cuûa caïnh BC

Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:

a)  Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC

b)  Viết phương trình đđöôøng trung bình song song cạnh AB

c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN

d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong  tam giaùc ABC   

Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và

a) đi qua điểm A(3;5).

b) tiếp xúc với đường thẳng có pt x + y = 1.

 

0

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6