Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{755}+\frac{1}{1147}\)
\(=\frac{1}{7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(=\frac{1}{6}\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}.\frac{36}{37}\)
\(=\frac{6}{37}\)
\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{755}+\frac{1}{1147}\)
\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(=\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{35.37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
~ Hok tốt ~
Ta có: 1/4+1/6+1/10000 luôn bé hơn 1/2 vì phân số có mẫu số càng lớn thì phân số càng nhỏ.
Nhớ k và kết bạn cho mình nha
\(\frac{1}{4}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)+ \(\frac{1}{64}\)+ \(\frac{1}{100}\)+ \(\frac{1}{144}\)+ \(\frac{1}{196}\)+ .........+ \(\frac{1}{10000}\)< \(\frac{1}{2}\)
Nhận xét : Theo định luật toán học,khi phân số có các tử số bằng nhau,thì phân số nào có mẫu số càng lớn,phân số càng bé.Vậy phân số \(\frac{1}{2}\)lớn hơn biểu thức ở trên.
Hok tốt #
\(\frac{1}{16}\)<\(\frac{1}{3\cdot4}\)tương tự=>\(\frac{1}{4}+\)\(\frac{1}{16}\)+.......+\(\frac{1}{196}< \frac{1}{3\cdot4}+......+\frac{1}{8\cdot9}=\frac{1}{3}\)--\(\frac{1}{9}\)+\(\frac{1}{4}\)=\(\frac{7}{18}< \frac{1}{2}\)
Vậy.................
Bạn tham khảo nhé
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+\frac{2}{8^2}+\frac{2}{10^2}+\frac{2}{12^2}+\frac{2}{14^2}\)
\(2A< \frac{1}{2}+\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(2A< \frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(2A< \frac{1}{2}+\frac{1}{2}-\frac{1}{14}\)
\(2A< 1-\frac{1}{14}\)
\(2A< \frac{13}{14}\)
\(A< \frac{13}{28}< \frac{14}{28}=\frac{1}{2}\) ( đpcm )
Vậy \(A< \frac{1}{2}\)
Chúc bạn học tốt ~
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{196}< \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+...+\frac{1}{14^2-1}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{15}\right)< \frac{1}{2}\)
Vậy \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\left(đpcm\right)\)
b) \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}< \frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{13\cdot15}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(1-\frac{1}{15}\right)< \frac{1}{2}\)
\(\)
a, \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}< 1\)
Vì \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(........\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....-\frac{1}{n}\)\(=1-\frac{1}{n}=\frac{n-1}{n}< 1\)
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(=\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{6}{37}\)
Đặt \(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(A=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(6A=6\left(\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+\frac{1}{19\cdot25}+\frac{1}{25\cdot31}+\frac{1}{31\cdot37}\right)\)
\(6A=\frac{6}{1.7}+\frac{6}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(6A=1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\)
\(6A=1-\frac{1}{37}\)
\(6A=\frac{36}{37}\)
\(A=\frac{36}{37}:6\)
\(A=\frac{6}{37}\)
Ta có:
\(K=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
K = \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{755}+\frac{1}{1147}=0,1621963429\)