Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) 5/8 x 4/10 + 2/3 =
= 1/4+ 2/3 = 11/12
b)5/12 x 4/7+5/12 x3/7
=5/12 x (4/7 +3/7)
=5/12 x1 = 5/12
c)(4/5 + 3/10 - 1/5 ) x 6 : 4/7
= ( 8/10 + 3/10 + 2/10) x 6 x 7/4
=13/10 x 21/2
=273/20
2.
5/8 và 3/2
ta có 5/8 =10/16 ; 3/2 =24 /16
vì 24 /16 >10 /16 nên 3/2 > 5/8
b. tương tự như câu a nha
c 418/417 và 925 /926
418/417 > 1 ; 925 /926 < 1
vì 418 /417 >1 mà 925/926 < 1 nên 418 / 417 > 925 /926
chúc bạn học tốt nha !
\(\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{2\text{x}3+4\text{x}6+6\text{x}9+8\text{x}12}\)
\(\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{2\text{x}3+4\text{x}6+6\text{x}9+8\text{x}12}\)
\(=\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{\text{1x}2\text{x}3+2\text{x}4\text{x}3+3\text{x}6\text{x}3+4\text{x}8\text{x}3}\)
\(=\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{3\left(1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8\right)}\)
\(=\frac{1}{3}\)
Ta có: \(\frac{1.2+2.4+3.6+4.8}{2.3+4.6+6.9+8.12}=\frac{1.2}{2.3}+\frac{2.4}{4.6}+\frac{3.6}{6.9}+\frac{4.8}{8.12}.\)
\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{3}.4=\frac{4}{3}\)
#)Giải :
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{5}-\frac{1}{10}\)
\(A=\frac{1}{10}\)
\(\frac{2,4\times1994\times2+1,6\times3996\times3+1,2\times4010\times4}{3+7+11+...+95+99-275}\)
\(=\frac{0,2\times6\times2\times2\times997\times2+0,2\times8\times6\times666\times3+0,2\times6\times2\times2005\times4}{\left(99+3\right)\times49:2-275}\)
\(=\frac{0,2\times6\times8\times997+0,2\times8\times6\times666\times3+0,2\times6\times8\times2005}{2499-275}\)
\(=\frac{0,2\times6\times8\times\left(997+666\times3+2005\right)}{2224}\)
\(=\frac{0,2\times2\times3\times8\times\left(997+1998+2005\right)}{8\times2\times0,2\times695}\)
\(=\frac{3\times\left(2995+2005\right)}{695}\)
\(=\frac{3\times5000}{695}=\frac{3\times1000\times5}{5\times139}\)
\(=\frac{3\times1000}{139}=\frac{3000}{139}\)
bài 2
a] = 3 x \(\frac{4343}{7171}\)= \(\frac{17372}{7171}\)= \(\frac{172}{71}\)
b] = \(\frac{1}{33}\)x \(\frac{44}{7}\)= \(\frac{1}{3}\)x \(\frac{4}{7}\)=\(\frac{4}{21}\)
bài 1
a] y là 9
b] <=> 64y + 36y = 700 - 75 - 225
<=> 100y = 400
<=> y = 4
trên lớp cô sửa rồi nên mình giải luôn:
1) Tìm y
a) y3 + 3y = 12 x 11
y3 + 3y = 132
y x 10 + 3 + 3 x 10 + y = 132
( y x 10 + y ) + ( 3 x 10 + 3 ) = 132
11 x y + 33 = 132
11 x y = 132 - 33
11 x y = 99
y = 99 : 11
y = 9
b) 64 x y + 225 = 700 - 75 - 36 x y
64 x y + 225 = 625 - 36 x y
64 x y + 36 x y = 625 -225
64 x y + 36 x y = 400
( 64 + 36 ) x y = 400
100 x y = 400
y = 400 : 100
y = 4
2) Tính
a) \(\frac{4343}{7171}+\frac{4343}{7171}+\frac{4343}{7171}+\frac{4343}{7171}\)
\(=\frac{4343}{7171}\times4\)
\(=\frac{43}{71}\times4\)
\(=\frac{172}{71}\)
b) A = \(\frac{1}{33}\times\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
Ta có:
\(\frac{3333}{2020}=\frac{3333:101}{2020:101}=\frac{33}{20}\)
\(\frac{333333}{303030}=\frac{333333:10101}{303030:10101}=\frac{33}{30}\)
\(\frac{33333333}{42424242}=\frac{33333333:1010101}{42424242:1010101}=\frac{33}{42}\)
A = \(\frac{1}{33}\times\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
A = \(\frac{1}{33}\times33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
A = 1 x \(\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
A = 1 x \(\left(\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\right)\)
A = 1 x \(\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
A = 1 x \(\left(\frac{1}{3}-\frac{1}{7}\right)\)
A = 1 x \(\left(\frac{7}{21}-\frac{3}{21}\right)\)
A = 1 x \(\frac{4}{21}\)
A = \(\frac{4}{21}\)
\(\frac{2}{3\times5}\times a+\frac{2}{5\times7}\times a+...+\frac{2}{13\times15}\times a=\frac{28}{15}\)
=> \(\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)\times x=\frac{28}{15}\)
=> \(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\times x=\frac{28}{15}\)
=> \(\left(\frac{1}{3}-\frac{1}{15}\right)\times x=\frac{28}{15}\)
=> \(\frac{4}{15}\times x=\frac{28}{15}\)
=> \(x=\frac{28}{15}:\frac{4}{15}\)
-> \(x=7\)
\(\frac{2}{3\times5}\times a+\frac{2}{5\times7}\times a+...+\frac{2}{13\times15}\times a=\frac{28}{15}\)
\(a\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)=\frac{28}{15}\)
\(a\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{28}{15}\)
\(a\times\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{28}{15}\)
\(a\times\frac{4}{15}=\frac{28}{15}\)
\(a=\frac{28}{15}:\frac{4}{15}\)
\(a=\frac{28}{15}\times\frac{25}{4}\)
\(a=\frac{28}{4}=7\)