Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{4}-x\right)\left(x+\frac{2}{5}\right)=0\)
Ta xét 2 trường hợp
\(\begin{cases}\frac{1}{4}-x=0\\x+\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{2}{5}\end{cases}}\)
tớ mới làm bài 1 thôi bài 2 3 tớ ko có thời gian
\(H=\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{2\cdot1}\)
\(U=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{2\cdot1}\right)\)
\(U=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(H=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(HU=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(UH=\frac{1}{100}-1+\frac{1}{100}\)
\(HU=\frac{2}{100}-1=-\frac{49}{50}\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
\(A=\frac{99}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
\(A=\frac{99}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{99}{100}-\frac{99}{100}\)
\(A=\frac{99-99}{100}=0\)
Bài 2
\(\left(3x+5\right).\left(2x-4\right)=0\)
\(TH1:3x+5=0\)
\(3x=-5\)
\(x=-\frac{5}{3}\)
\(TH2:2x-4=0\)
\(2x=4\)
\(x=2\)
\(\left(x^2-1\right).\left(x+3\right)=0\)
\(\Rightarrow x^2-1=0\)
\(x^2=1\)
\(\Rightarrow x=1\)
\(x+3=0\)
\(x=-3\)
\(5x^2-\frac{1}{2}x=0\)
\(\Rightarrow5x^2-\frac{x}{2}=0\)
\(\Rightarrow5x^2=\frac{5x^2}{1}=\frac{5x^2.2}{2}\)
\(10x^2-x=x.\left(10x-1\right)\)
\(\frac{x.\left(10x-1\right)}{2}=0\)
\(\frac{x.\left(10x-1\right)}{2}.2=0.2\)
\(10x-1=0\)
\(x=\frac{1}{10}=0.100\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}=0.100\\x=0\end{cases}}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\frac{x}{4}=\frac{3}{4}+\frac{1}{2}\)
\(\frac{x}{4}=\frac{5}{4}\)
\(\Rightarrow x=5\)
\(\frac{1}{8}+\frac{7}{8}:x=\frac{3}{4}\)
\(\frac{7}{8}:x=\frac{3}{4}-\frac{1}{8}\)
\(x=\frac{7}{8}:\frac{5}{8}\)
\(x=\frac{56}{40}=\frac{28}{20}=\frac{14}{10}=\frac{7}{5}\)
C = 1/100 - ( 1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99
C = 1/100 - ( 1- 1/2+ 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100 )
C = 1/100 - ( 1 - 1/100 )
C = 1/100 - 99/100
C = \(\frac{-49}{50}\)
2.
a) Ta có:
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b) Ta có:
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)
Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)
Vậy, x = -2004