K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

vì p>3 nên p có dạng 3k+1 hoặc 3k+2

nếu p=3k+1 thì p+2=3k +3 chia hết cho 3

nếu p=3k+2 thì p+2 =3k+4  (với p+2 là số nguyên tố)

Vậy p có dạng 3k+2

nếu p=3k+2 thì p+1=3k+3  (với k là số lẻ)

Vậy p+1 chia hết cho 6

 

22 tháng 7 2015

Bài 1 :

Gọi p là số nguyên tố phải tìm.

Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r  với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.

Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.

Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A =  {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}

Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}

Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}

Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.

Loại p = 169 = 132 là hợp số  chỉ có p = 109.

Số cần tìm là 109.

22 tháng 7 2015

2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

18 tháng 12 2015

a) n+8 chia hết cho n+1

    (n+1)+7 chia hết cho n+1

    =>7 chia hết cho n+1

        n+1 thuộc U(7)={1;7}

 n+1          1             7

  n              0           6

Vậy với n thuộc{0;6} thì n+8 chia hết cho n+1

Tick mình nha bạn!

13 tháng 10 2018

a)Ta có 

p = 42k + y  = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )

Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.

Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.

Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?1, Số tận cùng là 4 thì chia hết cho 22, Số chia hết cho 2 thì có chữ số tận cùng là 43, Số chia hết cho 5 thì có chữ số tận cùng là 54, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 75, Số chia hết cho 9 có thể chia hết cho 36, Số chia hết cho 3 có thể chia hết cho 97, Nếu một số không chia hết...
Đọc tiếp

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

1, Số tận cùng là 4 thì chia hết cho 2

2, Số chia hết cho 2 thì có chữ số tận cùng là 4

3, Số chia hết cho 5 thì có chữ số tận cùng là 5

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7

5, Số chia hết cho 9 có thể chia hết cho 3

6, Số chia hết cho 3 có thể chia hết cho 9

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó

10, Hợp số là số tự nhiên nhiều hơn 2 ước

11, Một số nguyên tố đều là số lẻ

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố

16, Hai số nguyên tố là hai số nguyên tố cùng nhau 

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau 

1

1, Số tận cùng là 4 thì chia hết cho 2                            Đ

2, Số chia hết cho 2 thì có chữ số tận cùng là 4         Đ

3, Số chia hết cho 5 thì có chữ số tận cùng là 5         Đ

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7            S

5, Số chia hết cho 9 có thể chia hết cho 3                       Đ

6, Số chia hết cho 3 có thể chia hết cho 9                      S

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9               S

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r                  Đ

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó                    S

10, Hợp số là số tự nhiên nhiều hơn 2 ước                Đ

11, Một số nguyên tố đều là số lẻ                        S

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5                        S

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8              Đ

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số                 Đ

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố              Đ

16, Hai số nguyên tố là hai số nguyên tố cùng nhau                             S

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau                         S

ht

12 tháng 10 2016

a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1

+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1

Vậy...

b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số 

k minh nha

8 tháng 11 2017

Tran van thanh dung do

2 tháng 1 2017

Vì p là số nguyên tố lớn hơn 3 => p không chia hết cho 3

=> p +1 chia het cho 3 (1)

Vì p là số nguyên tố lớn hơn 3 => p là số lẻ

=> p + 1 là số chẵn => p + 1 chia hết cho 2 (2)

Tu (1) va (2) => p + 1 chia het cho (3 x 2) 

                        Hay P + 1 chia hết cho 6

k mik nha,đây là cách làm đúng nhất

2 tháng 1 2017

p là số nguyên tố lớn hơn 3 => p là số lẻ => p+1 chia hết cho 2 (1).

p là số nguyên tố lớn hơn 3 => p không chia hết cho 3. Mà p+2 cũng là số nguyên tố => p+2 không chia hết cho 3.

Mà trong 3 số tự nhiên liên tiếp p, p+1, p+2 phải có 1 số chia hết cho 3 => p+1 chia hết cho 3 (2)

Từ (1) và (2) => p+1 chia hết cho 6 (do ƯCLN(2,3)=1).