Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
a) \(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
b) \(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)
\(S=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
c) \(S=1.4+2.5+3.6+...+n\left(n+3\right)\)
\(=1.2+1.2+2.3+2.2+3.4+3.2+...+n\left(n+1\right)+2n\)
\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)+2\left(1+2+3+...+n\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+n\left(n+1\right)\)
\(=\frac{n\left(n+1\right)\left(n+5\right)}{3}\)
a) \(A=1+2+2^2+...+2^{2016}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(\Rightarrow A=2^{2017}-1\)
Vậy \(A=2^{2017}-1\)
b) \(B=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy...
hoc cm quy nap chua Kq=n^2(n+1)
day la cach cm
1.2 + 2.5 +...+ n(3n-1) = n^2(n+1) ̣́(*)
n = 1=> 2 = 2 đúng.
giả sử (*) đúng với n = k, ta có:
1.2 + 2.5 +...+ k(3k-1) = k^2(k+1) (1)
ta cm (*) đúng với n = k + 1, thật vậy:
(1) => 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = k^2(k+1) + (k + 1)[3(k + 1) - 1]
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)[k^2 + 3k +2)
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)(k^2 + k + 2k +2 )
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)[k(k + 1) +2(k +1)]
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)^2(k + 2)
vậy (*) đúng với n = k +1 , theo nguyên lý qui nạp (*) đúng với mọi n
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
- Thời tiết,khí hậu,các loại đất khác nhau ảnh hưởng đến sự hút nước và muối khoáng của cây
- VD.nếu thời tiết quá nong bức ít mưa thì cây cối sẽ khô héo =>cây chết
bộ rễ thường ăn sâu lan rộng có nhiều rễ con để có thể hút được nhiều nước và muối khoáng giúp cây duy trì sự sống trong điều kiện khắc nghiệt của thiên nhiên.
hình như sai sai nhỉ