Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(6A=\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\)
\(=1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\)
\(=1-\frac{1}{37}=\frac{36}{37}\)
\(A=\frac{6}{37}\)
1.\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{23}-\frac{4}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
2. Đặt \(A=\frac{3}{14}+\frac{3}{84}+\frac{3}{204}+\frac{3}{374}+\frac{3}{594}+\frac{3}{864}\)
\(\Rightarrow A=\frac{3}{2.7}+\frac{3}{7.12}+...+\frac{3}{27.32}\)
\(\Rightarrow5A=3.\left(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{27.32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{27}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\frac{15}{32}=\frac{45}{32}\Rightarrow A=\frac{45}{32}:5=\frac{9}{32}\)
3. Đặt \(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\)
\(\Rightarrow3S=\frac{3}{10}+\frac{3}{40}+...+\frac{3}{340}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\Rightarrow S=\frac{9}{20}:3=\frac{3}{20}\)
Câu 1:
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+.......+\frac{1}{31.37}=\frac{1-\frac{1}{37}}{6}\)
=1/1×7+1/7×13+1/13×19+...+1/31×37
=1/6×(1-1/7)+1/6×(1/7-1/13)+1/6×(1/13-1/19)+...+1/6×(1/31-1/37)
=1/6×(1-1/7+1/7-1/13+1/13-1/19+...+1/31-1/37)
=1/6×(1-1/37)
=1/6×36/37
=6/37
A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...
A=(1/6)*( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)
A=(1/6)*(1-1/37)
A=(1/6)*(36/37)
A=6/37
.