K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

B1 :

\(\frac{x}{3}=\frac{y}{6}=\frac{xy}{3\times6}=\frac{162}{18}=9\)

---> x = 3.9 = 27

---> y = 6.9 = 54

B2 :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{xyz}{2\times3\times5}=\frac{-240}{30}=-8\)

---> x = -8.2 = -16

---> y = -8.3 = -24

---> z = -8.5 = -40

xin tiick

12 tháng 10 2021

Ta có :

x + y + z = 17

\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{10}{2z+4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{10}{2z+4}=\frac{7+3+10}{\left(2x+2\right)+\left(2y-4\right)+\left(2x+4\right)}\)

\(=\frac{20}{2.\left(x+y+z+1\right)}=\frac{10}{17+1}=\frac{5}{9}\)

\(\Rightarrow\hept{\begin{cases}2x+2=7:\frac{5}{9}=\frac{63}{5}\\2y-4=3:\frac{5}{9}=\frac{27}{5}\\z+4=5:\frac{5}{9}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{\frac{63}{5}-2}{2}\\y=\frac{\frac{27}{5}+4}{2}\\z=9-4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{106}{5}\\y=\frac{94}{5}\\z=5\end{cases}}\)

12 tháng 10 2021

Nhầm xíu nhé :

Bạn làm đến cái suy ra ở ngoặc nhọn thứ nhất rồi làm tiếp như sau :

.........................................

\(\Rightarrow\hept{\begin{cases}x=\frac{\frac{63}{5}-2}{2}=\frac{63}{10}\\y=\frac{\frac{27}{5}+4}{2}=\frac{47}{10}\\z=9-4=5\end{cases}}\)

5 tháng 8 2019

Làm mẫu câu a nhé:

Ta có: \(2x=3y\)

   \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)

\(\Rightarrow x=3.5=15\)

\(y=5.2=10\)

5 tháng 8 2019

Ý 1:

\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)

=> x,y=...

\(\frac{x}{3}=\frac{y}{4}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)

=>x,y=...

\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)

=>x,y,z=....

16 tháng 8 2019

Ta có: \(\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1-7y}{5x-4x}=\frac{-2y}{x}\)

\(\Rightarrow\frac{1+5y}{5x}=\frac{-2y}{x}\)\(\Rightarrow\frac{1+5y}{5}=-2y\)\(\Rightarrow1+5y=-10y\)\(\Rightarrow15y=-1\)\(\Rightarrow y=\frac{-1}{15}\)

Ta có: \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)\(\Rightarrow5x=\frac{\frac{2}{3}.12}{\frac{4}{5}}=10\)\(\Rightarrow x=2\)

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=-1\)

\(\Rightarrow\frac{2x}{6}=-1\Rightarrow2x=-6\Rightarrow x=-3\)

\(\Rightarrow\frac{3y}{15}=-1\Rightarrow3y=-15\Rightarrow y=-5\)

\(\Rightarrow\frac{z}{7}=-1\Rightarrow z=-7\)

theo đề ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = -14

=> \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)

Áp dụng t/c DTSBN ta có:

\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=\frac{-14}{14}\)  = \(-1\)

=> \(\frac{x}{3}=-1=>x=-3\)

\(\frac{y}{5}=-1=>y=-5\)

\(\frac{z}{7}=-1=>z=-7\)

t i c k nha!! 4354565475677687978873535752456465465765786876897978

8 tháng 11 2016

a)

\(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)

Mà 2 ; 4 cùng dấu

=> x ; y cùng dấu

Vậy ........

b)

\(4x=7y\)

\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)

Mày 4 và 7 cùng dấu

=> x ; y cùng dấu

Vậy ........

\(\frac{x}{y}=\frac{2}{5}=>\frac{x}{2}=\frac{y}{5}\)

\(=>5x=2y\)

\(=>x=2;y=5\)

Chắc 100% luôn đó @@@@@ nha

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

15 tháng 8 2019

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)   và \(x^2-y^2=-16\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{1}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}=\frac{x^2-y^2}{64-144}=-\frac{16}{-80}=\frac{1}{5}\)

Suy ra \(\frac{x^2}{64}=\frac{1}{5}\Rightarrow x=\frac{32}{5}\)

         \(\frac{y^2}{144}=\frac{1}{5}\Rightarrow y=\frac{72}{5}\)

         \(\frac{z}{15}=\frac{1}{5}\Rightarrow z=3\)

Vậy \(x=\frac{32}{5};y=\frac{72}{5};z=3\)

Chúc bạn học tốt !!!