Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chắc h có mấy thành cay r nên ko làm bn lên mạng tải phẩn mêm có cánh iair đó :D
Giải:
a) Theo đề ra, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\) và \(a+b=72\) (Sửa x+y =72)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}\)
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\dfrac{a}{5}=6\Rightarrow a=6.5=30\)
\(\Rightarrow\dfrac{b}{7}=6\Rightarrow b=6.7=42\)
Vậy ...
b) Theo đề ra, ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\) và \(a+b-c=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\dfrac{a}{6}=3\Rightarrow a=3.6=18\)
\(\Rightarrow\dfrac{b}{4}=3\Rightarrow b=3.4=12\)
\(\Rightarrow\dfrac{c}{3}=3\Rightarrow a=3.3=9\)
Vậy ...
c) Theo đề ra, ta có:\(\dfrac{12}{x}=\dfrac{3}{y}\) và \(x-y=36\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}\)
\(\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\dfrac{x}{12}=4\Rightarrow x=12.4=48\)
\(\Rightarrow\dfrac{y}{3}=4\Rightarrow x=3.4=12\)
Vậy ...
d) Theo đề ra, ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b-c=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}=\varnothing\)
Đề câu này sai nhé!
Chúc bạn học tốt!
a) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.6=30\\b=7.6=42\end{matrix}\right.\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.3=18\\b=4.3=12\\c=3.3=9\end{matrix}\right.\)
c) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.4=48\\y=3.4=12\end{matrix}\right.\)
d) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}\) (Vô lý)
=> Không thể làm
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)
Do đó: x=250/37; y=150/37; z=525/37
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Ta có: x/2=y/3
nên x/8=y/12(1)
Ta có: y/4=z/5
nên y/12=z/15(2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30
a: \(\Leftrightarrow\dfrac{5}{3}+\dfrac{4}{3}< x< 3+\dfrac{1}{5}+1+\dfrac{4}{5}\)
=>3<x<5
=>x=4
b: \(\Leftrightarrow\dfrac{1}{3}:2x=-5+\dfrac{1}{4}=-\dfrac{19}{4}\)
=>\(2x=\dfrac{1}{3}:\dfrac{-19}{4}=\dfrac{1}{3}\cdot\dfrac{-4}{19}=\dfrac{-4}{57}\)
=>x=-2/57
c: \(\Leftrightarrow x\cdot\dfrac{-3}{2}=\dfrac{10}{3}-\dfrac{6}{7}=\dfrac{70-18}{21}=\dfrac{52}{21}\)
=>\(x=\dfrac{-52}{21}:\dfrac{3}{2}=\dfrac{-52}{21}\cdot\dfrac{2}{3}=\dfrac{-104}{63}\)
d: \(\Leftrightarrow70+18< x< 120+70\)
=>88<x<190
hay \(x\in\left\{89;90;...;188;189\right\}\)
a, \((\dfrac{1}{3}-2x)^2+\dfrac{5}{4}=\dfrac{21}{16}\)
\((\dfrac{1}{3})^2\) - (2x)2 = \(\dfrac{1}{16}\)
=> \(\dfrac{1}{9}\)- (2x)2=\(\dfrac{1}{16}\)
=> (2x)2=\(\dfrac{7}{144}\)
=> 22.x2=\(\dfrac{7}{144}\)
=> 4.x2 =\(\dfrac{7}{144}\)
=> x2= \(\dfrac{7}{576}\)
=>x= +\(\sqrt{\dfrac{7}{576}}\) hoặc - \(\sqrt{\dfrac{7}{576}}\)
b,\(\dfrac{4-x}{3}=\dfrac{5}{2}\)
=> (4-x).2 = 5.3
=>8-x.2 = 15
=> x.2 = 8-15
=>x.2 = -7
=> x= -\(\dfrac{7}{2}\)
c. 7\(\dfrac{1}{3}\)- | x-1| : 2= \(\dfrac{5}{2}\)
=>\(\dfrac{22}{3}\)-|x-1| .\(\dfrac{1}{2}\) =\(\dfrac{5}{2}\)
=> |x-1|.\(\dfrac{1}{2}\)=\(\dfrac{29}{6}\)
=> |x-1| =\(\dfrac{29}{3}\)
+) x-1 = \(\dfrac{29}{3}\)=> x=\(\dfrac{32}{3}\)
+) x-1 = -\(\dfrac{29}{3}\)=> x=-\(\dfrac{26}{3}\)
Vậy x= \(\dfrac{32}{3}\)hoặc x=-\(\dfrac{26}{3}\)
1)
a.\(\dfrac{1}{5}+x=\dfrac{13}{50}\)
\(\Leftrightarrow x=\dfrac{13}{50}-\dfrac{1}{5}=\dfrac{13-10}{50}=\dfrac{3}{50}\)
b.\(\dfrac{1}{6}-x=\dfrac{5}{12}\)
\(\Leftrightarrow x=\dfrac{1}{6}-\dfrac{5}{12}=\dfrac{2-5}{12}=-\dfrac{3}{12}=-\dfrac{1}{4}\)
c.\(x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}.\left(-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d.\(x:\dfrac{7}{11}=\dfrac{9}{33}\)
\(\Leftrightarrow x=\dfrac{9}{33}.\dfrac{7}{11}=\dfrac{3}{11}.\dfrac{7}{11}=\dfrac{21}{121}\)
e.\(\dfrac{3}{5}.x=-\dfrac{21}{10}\)
\(\Leftrightarrow x=-\dfrac{21}{10}:\dfrac{3}{5}=-\dfrac{21}{10}.\dfrac{5}{3}=-\dfrac{7}{2}\)
a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\) \(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\\ \Rightarrow\dfrac{x}{2008}=1\\ \Rightarrow x=2008\)
b) \(\dfrac{7}{x}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}\right)=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{7}{15}\\ \Rightarrow x=15\)
c) \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)
\(\Rightarrow2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=\dfrac{15}{93}.2\)
\(\Rightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\\ \Rightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\\ \Rightarrow\dfrac{2x}{3\left(2x+3\right)}=\dfrac{10}{31}\\ \Rightarrow\dfrac{10.3\left(2x+3\right)}{31}=2x\\ \Rightarrow\dfrac{30\left(2x+3\right)}{31}=2x\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{31}:2\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{62}\\ \Rightarrow x=\dfrac{15\left(2x+3\right)}{31}\\\Rightarrow\dfrac{15\left(2x+3\right)}{x}=31\\ \Rightarrow\dfrac{30x+45}{x}=31\\ \Rightarrow30+\dfrac{45}{x}=31\\ \Rightarrow \dfrac{45}{x}=1\\ \Rightarrow x=45\)
a/ \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-............-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+.......+\dfrac{1}{120}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+.......+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\dfrac{3}{16}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}=\dfrac{13}{16}\)
\(\Leftrightarrow x=1631,5\)
Vậy ..................
a, \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy x = 23
b, \(\dfrac{x+4}{20}=\dfrac{5}{5x+4}\)
\(\Rightarrow\left(x+4\right)\left(5x+4\right)=100\)
\(\Rightarrow5x^2+24x+16=100\)
sai đề à?
c, \(\dfrac{7}{x+1}=\dfrac{x+1}{9}\)
\(\Rightarrow\left(x+1\right)^2=63\)
\(\Rightarrow\left[{}\begin{matrix}x+1=\sqrt{63}\\x+1=-\sqrt{63}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{63}-1\\x=-\sqrt{63}-1\end{matrix}\right.\)
Vậy...
a) \(\dfrac{3}{5}\) . x = \(\dfrac{21}{10}\)
x = \(\dfrac{21}{10}\) : \(\dfrac{3}{5}\)
x = \(\dfrac{21}{10}\) . \(\dfrac{5}{3}\)
x = \(\dfrac{105}{30}\)
x = \(\dfrac{7}{2}\)
b) \(\dfrac{x}{20}\) = \(\dfrac{4}{5}\)
\(\dfrac{x}{20}\) = \(\dfrac{16}{20}\)
=> x = 16
Bạn sai câu b) rồi. Câu b) ta có công thức: a:b=c:d => a.d=b.c mới đúng vì đây là tỉ lệ thức chứ sao bạn áp dụng giống như quy đồng thế?