K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Tìm x,biết:a,\(3^x+3^{x+2}=270\)b,\(x.\left(\frac{1}{3}\right)^0+\frac{2}{5}.\left(x+1\right)=0\)c,\(3x^2=27\)d,\(1,25-\left|0,5-x\right|=0\)2.Tìm x trong tỉ lệ thức:e,\(\frac{2}{3}x:\frac{1}{5}=1\frac{1}{3}:\frac{1}{4}\)g,\(2\frac{2}{3}:x=1\frac{7}{9}:0,02\)h,\(\frac{8}{3}:x=\frac{16}{9}:\frac{2}{100}\)i,\(\frac{-2}{3}+\frac{4}{5}:x=\frac{2}{3}\)3.Áp dụng tính chất dãy tỉ số bằng nhau để tìm x.Tìm x,y,z...
Đọc tiếp

1.Tìm x,biết:
a,\(3^x+3^{x+2}=270\)
b,\(x.\left(\frac{1}{3}\right)^0+\frac{2}{5}.\left(x+1\right)=0\)
c,\(3x^2=27\)
d,\(1,25-\left|0,5-x\right|=0\)
2.Tìm x trong tỉ lệ thức:
e,\(\frac{2}{3}x:\frac{1}{5}=1\frac{1}{3}:\frac{1}{4}\)
g,\(2\frac{2}{3}:x=1\frac{7}{9}:0,02\)
h,\(\frac{8}{3}:x=\frac{16}{9}:\frac{2}{100}\)
i,\(\frac{-2}{3}+\frac{4}{5}:x=\frac{2}{3}\)
3.Áp dụng tính chất dãy tỉ số bằng nhau để tìm x.Tìm x,y,z biết:
a,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{3},x-2y+z=-10\)
b,\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4},x-2y+3z=14\)
4.Một miếng đất hCN có chu vi là 70m và 2 cạnh của nó tỉ lệ với 3 và 4.TÍnh S của miếng đất đó?
5.Tính số đo góc A của tam giác ABC biết số các góc A,B,C của tam giác đó tỉ lệ với 3;5;7
6.Ba người A,B,C góp vốn kinh doanh theo tỉ lệ 3,5,7.Biết tổng số vốn của 3 người là 105 triệu đồng.Hỏi số tiền góp vốn của mỗi người là bao nhiêu?
7.Số h/s giỏi,khá,trung bình của khối 7 lần lượt tỉ lệ với 3,5,7.TÍnh số h/s khá,giỏi,trung bình của khối 7,biết tổng số h/s khá và trung bình hơn h/s giỏi là 180 em

P/s:Bài 4,5,6,7 là dùng chia tỉ lệ,tỉ lệ thuận

1
18 tháng 12 2016

nhìu zậy !

 

20 tháng 6 2016

Câu 1

a) <=> 3x-2=|2x+1|

<=> \(\left[\begin{array}{nghiempt}3x-2=2x+1\\2-3x=2x+1\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)

b)các phân só cần tìm a,b,c ta có a+b+c=213/70

và a:b:c=\(\frac{3}{5}:\frac{4}{1}:\frac{5}{2}\)=6:40:25

=> a= 9/35

b=12/7

c=15/14

Câu 2: => \(\frac{7.2x+x}{7}=\frac{1}{y}\)=> y(14x+1)=7

=> (x,y)=(0;7)

 

Bài 1:1) Tìm x, biết: \(4\frac{5}{9}\): \(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\): \(\left(-21\frac{1}{2}\right)\)2) Tính giá trị của biểu thức:\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 03) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).Bài 2:a) Tìm x,...
Đọc tiếp

Bài 1:

1) Tìm x, biết: \(4\frac{5}{9}\)\(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\)\(\left(-21\frac{1}{2}\right)\)

2) Tính giá trị của biểu thức:

\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 0

3) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).

Bài 2:

a) Tìm x, biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|\)+ ........ + \(\left|x+\frac{1}{110}\right|=11x\)

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.

Bài 3: Cho các đa thức:

\(f\left(x\right)\)\(3x^4+2x^3-5x^2+7x-3\)và \(g\left(x\right)=x^4+6x^3-15x^2-6x-9\)

a) Tìm đa thức \(h\left(x\right)=3f\left(x\right)-g\left(x\right)\)

b) Tìm nghiệm của đa thức \(h\left(x\right)\).

Bài 4:

a) Tìm x, y, z biết: \(\frac{3x}{8}=\frac{y}{4}=\frac{3z}{16}\)và \(2x^2+2y^2-z^2=10\)

b) Tìm số tự nhiên a nhỏ nhất khác 0 sao cho khi chia a cho \(\frac{8}{9}\)và khi chia a cho \(\frac{12}{17}\)đều được kết quả là số tự nhiên.

Bài 5: Cho \(\Delta ABC\)vuông tại A, ( AB < AC ). Gọi M là trung điểm của BC, từ M kẻ đường vuông góc với tia phân giác của góc BAC tại I, cắt AB và AC lần lượt tại D, E. Từ B kẻ đường thẳng song song với AC cắt DE tại K.

a) Tính góc BKD.

b) Chứng minh rằng: \(AE=\frac{AB+AC}{2}\).

c) Kẻ AH vuông góc với BC. Biết BH = 18 cm, CH = 32 cm. Tính độ dài AB và AC.

d) Nếu trên hình vẽ so với thực tế có tỉ lệ xích là 1 : 100000. Khi đặt tại H một máy phát sóng truyền thanh có bán kính hoạt động 30 km thì các thành phố tại địa điểm A và C có nhận được tín hiệu không ? Vì sao ?

0
Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

avt755982_60by60.jpg sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````

20 tháng 11 2019

2x3xx4....x48x49.h cua ket qua co chu so tan cung la so gi

2 tháng 2 2020

Bài 1 : 

Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)

\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )

Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)

Bài 2 , để chiều nhé bạn

2 tháng 2 2020

Bài 3 : 

Cách 1 : 

\(\left|x-1004\right|-\left|x+1003\right|\)

+ ) Xét \(x< -1003\)suy ra 

\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)

+ ) Xét \(-1003\le x< 1004\). Suy ra 

\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)

+ ) Xét \(x\ge1004\). Suy ra 

\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)

Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)

Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007 

Vậy \(A_{max}=2007\)khi \(x< -1003\)

17 tháng 10 2015

3, Ta có x/5 = y/4 => x/5^2 = y/4^2 => x^2/25 = y^2/16 

áp dụng t/c của dãy tỉ số bằng nhau , ta có 

x^2/25 = y^2/16 = x^2-y^2/25-16=1/9

=> x/5=1/9 => x=1/9.5 => x = 5/9

y/4=1/9=>y=1/9.4=>y=4/9